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The most widely used task functional magnetic resonance imaging
(fMRI) analyses use parametric statistical methods that depend on a
variety of assumptions. In this work, we use real resting-state data
and a total of 3 million random task group analyses to compute
empirical familywise error rates for the fMRI software packages SPM,
FSL, and AFNI, as well as a nonparametric permutation method. For a
nominal familywise error rate of 5%, the parametric statistical
methods are shown to be conservative for voxelwise inference
and invalid for clusterwise inference. Our results suggest that the
principal cause of the invalid cluster inferences is spatial autocorre-
lation functions that do not follow the assumed Gaussian shape. By
comparison, the nonparametric permutation test is found to produce
nominal results for voxelwise as well as clusterwise inference. These
findings speak to the need of validating the statistical methods being
used in the field of neuroimaging.
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Since its beginning more than 20 years ago, functional magnetic
resonance imaging (fMRI) (1, 2) has become a popular tool

for understanding the human brain, with some 40,000 published
papers according to PubMed. Despite the popularity of fMRI as a
tool for studying brain function, the statistical methods used have
rarely been validated using real data. Validations have instead
mainly been performed using simulated data (3), but it is obviously
very hard to simulate the complex spatiotemporal noise that arises
from a living human subject in an MR scanner.
Through the introduction of international data-sharing initia-

tives in the neuroimaging field (4–10), it has become possible to
evaluate the statistical methods using real data. Scarpazza et al.
(11), for example, used freely available anatomical images from
396 healthy controls (4) to investigate the validity of parametric
statistical methods for voxel-based morphometry (VBM) (12).
Silver et al. (13) instead used image and genotype data from 181
subjects in the Alzheimer’s Disease Neuroimaging Initiative
(8, 9), to evaluate statistical methods common in imaging ge-
netics. Another example of the use of open data is our previous
work (14), where a total of 1,484 resting-state fMRI datasets from
the 1,000 Functional Connectomes Project (4) were used as null
data for task-based, single-subject fMRI analyses with the SPM
software. That work found a high degree of false positives, up to
70% compared with the expected 5%, likely due to a simplistic
temporal autocorrelation model in SPM. It was, however, not
clear whether these problems would propagate to group studies.
Another unanswered question was the statistical validity of other
fMRI software packages. We address these limitations in the
current work with an evaluation of group inference with the three
most common fMRI software packages [SPM (15, 16), FSL (17),
and AFNI (18)]. Specifically, we evaluate the packages in their
entirety, submitting the null data to the recommended suite of
preprocessing steps integrated into each package.
The main idea of this study is the same as in our previous one

(14). We analyze resting-state fMRI data with a putative task
design, generating results that should control the familywise error

(FWE), the chance of one or more false positives, and empirically
measure the FWE as the proportion of analyses that give rise to
any significant results. Here, we consider both two-sample and
one-sample designs. Because two groups of subjects are randomly
drawn from a large group of healthy controls, the null hypothesis
of no group difference in brain activation should be true. More-
over, because the resting-state fMRI data should contain no
consistent shifts in blood oxygen level-dependent (BOLD) activity,
for a single group of subjects the null hypothesis of mean zero
activation should also be true. We evaluate FWE control for both
voxelwise inference, where significance is individually assessed at
each voxel, and clusterwise inference (19–21), where significance
is assessed on clusters formed with an arbitrary threshold.
In brief, we find that all three packages have conservative

voxelwise inference and invalid clusterwise inference, for both
one- and two-sample t tests. Alarmingly, the parametric methods
can give a very high degree of false positives (up to 70%, com-
pared with the nominal 5%) for clusterwise inference. By com-
parison, the nonparametric permutation test (22–25) is found to
produce nominal results for both voxelwise and clusterwise in-
ference for two-sample t tests, and nearly nominal results for one-
sample t tests. We explore why the methods fail to appropriately
control the false-positive risk.

Results
A total of 2,880,000 random group analyses were performed to
compute the empirical false-positive rates of SPM, FSL, and
AFNI; these comprise 1,000 one-sided random analyses repeated
for 192 parameter combinations, three thresholding approaches,
and five tools in the three software packages. The tested parameter
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common statistical methods have not been validated using real
data. Here, we used resting-state fMRI data from 499 healthy
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cidence of significant results. In theory, we should find 5% false
positives (for a significance threshold of 5%), but instead we
found that the most common software packages for fMRI anal-
ysis (SPM, FSL, AFNI) can result in false-positive rates of up to
70%. These results question the validity of some 40,000 fMRI
studies and may have a large impact on the interpretation of
neuroimaging results.
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combinations, given in Table 1, are common in the fMRI field
according to a recent review (26). The following five analysis tools
were tested: SPM OLS, FSL OLS, FSL FLAME1, AFNI OLS
(3dttest++), and AFNI 3dMEMA. The ordinary least-squares (OLS)
functions only use the parameter estimates of BOLD response mag-
nitude from each subject in the group analysis, whereas FLAME1 in
FSL and 3dMEMA in AFNI also consider the variance of the subject-
specific parameter estimates. To compare the parametric statistical
methods used by SPM, FSL, and AFNI to a nonparametric method,
all analyses were also performed using a permutation test (22, 23, 27).
All tools were used to generate inferences corrected for the FWE rate
over the whole brain.
Resting-state fMRI data from 499 healthy controls, down-

loaded from the 1,000 Functional Connectomes Project (4), were
used for all analyses. Resting-state data should not contain sys-
tematic changes in brain activity, but our previous work (14)
showed that the assumed activity paradigm can have a large

impact on the degree of false positives. Several different activity
paradigms were therefore used, two block based (B1 and B2) and
two event related (E1 and E2); see Table 1 for details.
Fig. 1 presents the main findings of our study, summarized by

a common analysis setting of a one-sample t test with 20 subjects
and 6-mm smoothing [see SI Appendix, Figs. S1–S6 (20 subjects)
and SI Appendix, Figs. S7–S12 (40 subjects) for the full results].
In broad summary, parametric software’s FWE rates for clus-
terwise inference far exceed their nominal 5% level, whereas
parametric voxelwise inferences are valid but conservative, often
falling below 5%. Permutation false positives are controlled at a
nominal 5% for the two-sample t test, and close to nominal for
the one-sample t test. The impact of smoothing and cluster-
defining threshold (CDT) was appreciable for the parametric
methods, with CDT P = 0.001 (SPM default) having much better
FWE control than CDT P = 0.01 [FSL default; AFNI does not
have a default setting, but P = 0.005 is most prevalent (21)].

Table 1. Parameters tested for the different fMRI software packages, giving a total of 192 (3 × 2 × 2 × 4 × 2 × 2)
parameter combinations and three thresholding approaches

Parameter Values used

fMRI data Beijing (198 subjects), Cambridge (198 subjects), Oulu (103 subjects)
Block activity paradigms B1 (10-s on off), B2 (30-s on off)
Event activity paradigms E1 (2-s activation, 6-s rest), E2 (1- to 4-s activation, 3- to 6-s rest, randomized)
Smoothing 4-, 6-, 8-, 10-mm FWHM
Analysis type One-sample t test (group activation), two-sample t test (group difference)
No. of subjects 20, 40
Inference level Voxel, cluster
CDT P = 0.01 (z = 2.3), P = 0.001 (z = 3.1)

One thousand group analyses were performed for each parameter combination.
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Fig. 1. Results for one-sample t test, showing estimated FWE rates for (A) Beijing and (B) Cambridge data analyzed with 6 mm of smoothing and four
different activity paradigms (B1, B2, E1, and E2), for SPM, FSL, AFNI, and a permutation test. These results are for a group size of 20. The estimated FWE rates
are simply the number of analyses with any significant group activation divided by the number of analyses (1,000). From Left to Right: Cluster inference using
a cluster-defining threshold (CDT) of P = 0.01 and a FWE-corrected threshold of P = 0.05, cluster inference using a CDT of P = 0.001 and a FWE-corrected
threshold of P = 0.05, and voxel inference using a FWE-corrected threshold of P = 0.05. Note that the default CDT is P = 0.001 in SPM and P = 0.01 in FSL (AFNI
does not have a default setting).
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Among the parametric software packages, FSL’s FLAME1
clusterwise inference stood out as having much lower FWE, of-
ten being valid (under 5%), but this comes at the expense of
highly conservative voxelwise inference.
We also examined an ad hoc but commonly used thresholding

approach, where a CDT of P = 0.001 (uncorrected for multiple
comparisons) is used together with an arbitrary cluster extent
threshold of 10 8-mm3 voxels (26, 28). We conducted an addi-
tional 1,000 analyses repeated for four assumed activity paradigms
and the five different analysis tools (Fig. 2). Although no precise
control of false positives is assured, we found this makeshift in-
ference method had FWE ranging 60–90% for all functions except
FLAME1 in FSL. Put another way, this “P = 0.001 + 10 voxels”
method has a FWE-corrected P value of 0.6–0.9. We now seek to
understand the sources of these inaccuracies.

Comparison of Empirical and Theoretical Test Statistic Distributions.
As a first step to understand the inaccuracies in the parametric
methods, the test statistic values (t or z scores, as generated by
each package) were compared with their theoretical null distri-
butions. SI Appendix, Fig. S13, shows the histogram of all brain
voxels for 1,000 group analyses. The empirical and theoretical
nulls are well matched, except for FSL FLAME1, which has
lower variance (σ̂2 = 0.67) than the theoretical null (σ2 = 1). This is
the proximal cause of the highly conservative results from FSL
FLAME1. The mixed-effects variance is composed of intrasubject
and intersubject variance (σ2WTN , σ

2
BTW , respectively), and although

other software packages do not separately estimate each, FLAME1
estimates each and constrains σ2BTW to be positive. In these null
data, the true effect in each subject is zero, and thus the true
σ2BTW = 0. Thus, unless FLAME1’s σ̂2BWT is correctly estimated to
be 0, it can only be positively biased, and in fact this point was
raised by the original authors (29).
In an follow-up analysis on FSL FLAME1 (SI Appendix), we

conducted two-sample t tests on task fMRI data, randomly
splitting subjects into two groups. In this setting, the two-sample

null hypothesis was still true, but σ2BTW > 0. Here, we found cluster
false-positive rates comparable to FSL OLS (44.8% for CDT
P = 0.01 and 13.8% for CDT P = 0.001), supporting our con-
jecture of zero between-subject variance as the cause of
FLAME1’s conservativeness on completely null resting data.

Spatial Autocorrelation Function of the Noise. SPM and FSL depend
on Gaussian random-field theory (RFT) for FWE-corrected vox-
elwise and clusterwise inference. However, RFT clusterwise in-
ference depends on two additional assumptions. The first
assumption is that the spatial smoothness of the fMRI signal is
constant over the brain, and the second assumption is that the
spatial autocorrelation function has a specific shape (a squared
exponential) (30). To investigate the second assumption, the spatial
autocorrelation function was estimated and averaged using 1,000
group difference maps. For each group difference map and each
distance (1–20 mm), the spatial autocorrelation was estimated and
averaged along x, y, and z. The empirical spatial autocorrelation
functions are given in SI Appendix, Fig. S14. A reference squared
exponential is also included for each software, based on an intrinsic
smoothness of 9.5 mm (FWHM) for SPM, 9 mm for FSL, and
8 mm for AFNI (according to the mean smoothness of 1,000 group
analyses, presented in SI Appendix, Fig. S15). The empirical spatial
autocorrelation functions are clearly far from a squared exponen-
tial, having heavier tails. This may explain why the parametric
methods work rather well for a high CDT (resulting in small
clusters, more reflective of local autocorrelation) and not as well
for a low CDT (resulting in large clusters, reflecting distant auto-
correlation). SI Appendix, Fig. S16, shows how the cluster extent
thresholds differ between the parametric and the nonparametric
methods, for a CDT of P = 0.01. The nonparametric permutation
test is valid for any spatial autocorrelation function and finds much
more stringent cluster extent thresholds (three to six times higher
compared with SPM, FSL, and AFNI).
To better understand the origin of the heavy tails, the spatial

autocorrelation was estimated at different preprocessing stages
(no preprocessing, after motion correction, after motion correc-
tion, and 6-mm smoothing) using the 198 subjects in the Beijing
dataset. The resulting spatial autocorrelation functions are given
in SI Appendix, Fig. S17. It is clear that the long tails exist in the
raw data and become even more pronounced after the spatial
smoothing. These long-tail spatial correlations also exist for MR
phantoms (31) and can therefore be seen as scanner artifacts.

Spatial Distribution of False-Positive Clusters. To investigate whether
the false clusters appear randomly in the brain, all significant
clusters (P < 0.05, FWE-corrected) were saved as binary maps
and summed together (SI Appendix, Fig. S18). These maps of
voxelwise cluster frequency show the areas more and less likely
to be marked as significant in a clusterwise analysis. Posterior
cingulate was the most likely area to be covered by a cluster,
whereas white matter was least likely. As this distribution could
reflect variation in the local smoothness in the data, we used
group residuals from 1,000 two-sample t tests to estimate vox-
elwise spatial smoothness (32) (SI Appendix, Fig. S19). The
local smoothness maps show evidence of a posterior cingulate
“hot spot” and reduced intensity in white matter, just as in the
false-positive cluster maps. Notably, having local smoothness
varying systematically with tissue type has also been observed
for VBM data (13). In short, this suggests that violation of the
stationary smoothness assumption may also be contributing to
the excess of false positives.
In a follow-up analysis using the nonstationary toolbox for

SPM (fmri.wfubmc.edu/cms/software#NS), which provides
parametric cluster inference allowing for spatially varying
smoothness, we calculated FWE rates for stationary as well as
nonstationary smoothness. Use of nonstationary cluster size in-
ference did not produce nominal FWE: relative to the stationary
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Fig. 2. Results for two-sample t test and ad hoc clusterwise inference,
showing estimated FWE rates for 6 mm of smoothing and four different ac-
tivity paradigms (B1, B2, E1, and E2), for SPM, FSL, and AFNI. These results were
generated using the Beijing data and 20 subjects in each group analysis. Each
statistic map was first thresholded using a CDT of P = 0.001 (uncorrected for
multiple comparisons), and the surviving clusters were then compared with a
cluster extent threshold of 80mm3 (10 voxels for SPM and FSL which used 2 × 2 ×
2 mm3 voxels, three voxels for AFNI, which used 3 × 3 × 3 mm3 voxels). The
estimated FWE rates are simply the number of analyses with a significant result
divided by the number of analyses (1,000).
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cluster size test, it produced lower but still invalid FWE for a
CDT of P = 0.01, and higher FWE for a CDT of P = 0.001 (SI
Appendix, Table S2). This inconclusive performance can be at-
tributed to additional assumptions and approximations introduced
by the nonstationary cluster size test that can degrade its perfor-
mance (33, 34). In short, we still cannot rule out heterogeneous
smoothness as contributor to the standard cluster size methods’
invalid performance.

Impact on a Non-Null, Task Group Analysis. All of the analyses to this
point have been based on resting-state fMRI data, where the null
hypothesis should be true. We now use task data to address the
practical question of “How will my FWE-corrected cluster P
values change?” if a user were to switch from a parametric to a
nonparametric method. We use four task datasets [rhyme judg-
ment, mixed gambles (35), living–nonliving decision with plain or
mirror-reversed text, word and object processing (36)] down-
loaded from OpenfMRI (7). The datasets were analyzed using a
parametric (the OLS option in FSL’s FEAT) and a non-
parametric method (the randomise function in FSL) using a
smoothing of 5-mm FWHM (default option in FSL). The only
difference between these two methods is that FSL FEAT-OLS
relies on Gaussian RFT to calculate the corrected cluster
P values, whereas randomise instead uses the data itself. The
resulting cluster P values are given in SI Appendix, Table S3 (CDT
of P = 0.01) and SI Appendix, Tables S4 and S5 (CDT of P = 0.001).
SI Appendix, Fig. S20, summarizes these results, plotting the ratio
of FWE-corrected P values, nonparametric to parametric, against
cluster size. All nonparametric P values were larger than para-
metric (ratio > 1). Although this could be taken as evidence of a
conservative nonparametric procedure, the extensive simulations
showing valid nonparametric and invalid parametric cluster size
inference instead suggest inflated (biased) significance in the
parametric inferences. For CDT P = 0.01, there were 23 clusters
(in 11 contrasts) with FWE parametric P values significant at P =
0.05 that were not significant by permutation. For CDT P = 0.001,
there were 11 such clusters (in eight contrasts). If we assume that
these mismatches represent false positives, then the empirical
FWE for these 18 contrasts considered is 11/18 = 61% for CDT
P = 0.01 and 8/18 = 44% for CDT P = 0.001. These findings in-
dicate that the problems exist also for task-based fMRI data, and
not only for resting-state data.

Permutation Test for One-Sample t Test. Although permutation
tests have FWE within the expected bounds for all two-sample
test results, for one-sample tests they can exhibit conservative or
invalid behavior. As shown in SI Appendix, Figs. S3, S4, S9, and
S10, the FWE can be as low as 0.8% or as high as 40%. The one-
sample permutation FWE varies between site (Beijing, Cam-
bridge, Oulu), but within each site shows a consistent pattern
between the two CDTs and even for voxelwise inference. The
one-sample permutation test comprises a sign flipping pro-
cedure, justified by symmetrically distributed errors (22). Al-
though the voxel-level test statistics appear symmetric and do
follow the expected parametric t distribution (SI Appendix, Fig.
S13), the statistic values benefit from the central limit theorem
and their symmetry does not imply symmetry of the data. We
conducted tests of the symmetry assumption on the data for
block design B1, a case suffering both spuriously low (Cam-
bridge) and high (Beijing, Oulu) FWE (SI Appendix). We found
very strong evidence of asymmetric errors, but with no consistent
pattern of asymmetry; that is, some brain regions showed positive
skew and others showed negative skew.

Discussion
Using mass empirical analyses with task-free fMRI data, we have
found that the parametric statistical methods used for group
fMRI analysis with the packages SPM, FSL, and AFNI can

produce FWE-corrected cluster P values that are erroneous, being
spuriously low and inflating statistical significance. This calls into
question the validity of countless published fMRI studies based on
parametric clusterwise inference. It is important to stress that we
have focused on inferences corrected for multiple comparisons in
each group analysis, yet some 40% of a sample of 241 recent fMRI
papers did not report correcting for multiple comparisons (26),
meaning that many group results in the fMRI literature suffer
even worse false-positive rates than found here (37). According to
the same overview (26), the most common cluster extent threshold
used is 80 mm3 (10 voxels of size 2 × 2 × 2 mm), for which the
FWE was estimated to be 60–90% (Fig. 2).
Compared with our previous work (14), the results presented

here are more important for three reasons. First, the current
study considers group analyses, whereas our previous study
looked at single-subject analyses. Second, we here investigate the
validity of the three most common fMRI software packages (26),
whereas we only considered SPM in our previous study. Third,
although we confirmed the expected finding of permutation’s
validity for two-sample t tests, we found that some settings we
considered gave invalid FWE control for one-sample permuta-
tion tests. We identified skewed data as a likely cause of this and
identified a simple test for detecting skew in the data. Users
should consider testing for skew before applying a one-sample t
test, but it remains an important area for developing new
methods for one-sample analyses (see, e.g., ref. 38).

Why Is Clusterwise Inference More Problematic than Voxelwise? Our
principal finding is that the parametric statistical methods work
well, if conservatively, for voxelwise inference, but not for clus-
terwise inference. We note that other authors have found RFT
clusterwise inference to be invalid in certain settings under sta-
tionarity (21, 30) and nonstationarity (13, 33). This present work,
however, is the most comprehensive to explore the typical pa-
rameters used in task fMRI for a variety of software tools. Our
results are also corroborated by similar experiments for struc-
tural brain analysis (VBM) (11–13, 39, 40), showing that cluster-
based P values are more sensitive to the statistical assumptions.
For voxelwise inference, our results are consistent with a pre-
vious comparison between parametric and nonparametric methods
for fMRI, showing that a nonparametric permutation test can
result in more lenient statistical thresholds while offering precise
control of false positives (13, 41).
Both SPM and FSL rely on RFT to correct for multiple com-

parisons. For voxelwise inference, RFT is based on the assumption
that the activity map is sufficiently smooth, and that the spatial
autocorrelation function (SACF) is twice-differentiable at the
origin. For clusterwise inference, RFT additionally assumes a
Gaussian shape of the SACF (i.e., a squared exponential co-
variance function), that the spatial smoothness is constant over the
brain, and that the CDT is sufficiently high. The 3dClustSim
function in AFNI also assumes a constant spatial smoothness and
a Gaussian form of the SACF (because a Gaussian smoothing is
applied to each generated noise volume). It makes no assumption
on the CDT and should be accurate for any chosen value. As the
FWE rates are far above the expected 5% for clusterwise in-
ference, but not for voxelwise inference, one or more of the
Gaussian SACF, the stationary SACF, or the sufficiently high
CDT assumptions (for SPM and FSL) must be untenable.

Why Does AFNIs Monte Carlo Approach, Unreliant on RFT, Not
Perform Better? As can be observed in SI Appendix, Figs. S2, S4,
S8, and S10, AFNI’s FWE rates are excessive even for a CDT of
P = 0.001. There are two main factors that explain these results.
First, AFNI estimates the spatial group smoothness differently

compared with SPM and FSL. AFNI averages smoothness estimates
from the first-level analysis, whereas SPM and FSL estimate the
group smoothness using the group residuals from the general
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linear model (32). The group smoothness used by 3dClustSim may
for this reason be too low (compared with SPM and FSL; SI
Appendix, Fig. S15).
Second, a 15-year-old bug was found in 3dClustSim while

testing the three software packages (the bug was fixed by the AFNI
group as of May 2015, during preparation of this manuscript).
The bug essentially reduced the size of the image searched for
clusters, underestimating the severity of the multiplicity correc-
tion and overestimating significance (i.e., 3dClustSim FWE P
values were too low).
Together, the lower group smoothness and the bug in 3dClustSim

resulted in cluster extent thresholds that are much lower compared
with SPM and FSL (SI Appendix, Fig. S16), which resulted in par-
ticularly high FWE rates. We find this to be alarming, as 3dClust-
Sim is one of the most popular choices for multiple-comparisons
correction (26).
We note that FWE rates are lower with the bug-fixed 3dClustSim

function. As an example, the updated function reduces the de-
gree of false positives from 31.0% to 27.1% for a CDT of P =
0.01, and from 11.5% to 8.6% for a CDT of P = 0.001 (these
results are for two-sample t tests using the Beijing data, analyzed
with the E2 paradigm and 6-mm smoothing).

Suitability of Resting-State fMRI as Null Data for Task fMRI. One
possible criticism of our work is that resting-state fMRI data do
not truly compromise null data, as they may be affected by con-
sistent trends or transients, for example, at the start of the session.
However, if this were the case, the excess false positives would
appear only in certain paradigms and, in particular, least likely in
the randomized event-related (E2) design. Rather, the inflated
false positives were observed across all experiment types with
parametric cluster size inference, limiting the role of any such
systematic effects. Additionally, one could argue that the spatial
structure of resting fMRI, the very covariance that gives rise to
“resting-state networks,” is unrepresentative of task data and inflates
the spatial autocorrelation functions and induces nonstationarity.
We do not believe this is the case because it has been shown that
resting-state networks can be estimated from the residuals of task
data (42), suggesting that resting data and task noise share similar
properties. We assessed this in our four task datasets, estimating the
spatial autocorrelation of the group residuals (SI Appendix, Fig. S21)
and found the same type of heavy-tailed behavior as in the resting
data. Furthermore, the same type of heavy-tail spatial autocorrela-
tion has been observed for data collected with anMR phantom (31).
Finally, another follow-up analysis on task data (see Comparison of
Empirical and Theoretical Test Statistic Distributions and SI Appendix,
Task-Based fMRI Data, Human Connectome Project, a two-sample t
test on a random split of a homogeneous group of subjects) found
inflated false-positive rates similar to the null data. Altogether, we
find that these findings support the appropriateness of resting data
as a suitable null for task fMRI.

The Future of fMRI. It is not feasible to redo 40,000 fMRI studies,
and lamentable archiving and data-sharing practices mean most
could not be reanalyzed either. Considering that it is now pos-
sible to evaluate common statistical methods using real fMRI
data, the fMRI community should, in our opinion, focus on
validation of existing methods. The main drawback of a per-
mutation test is the increase in computational complexity, as the
group analysis needs to be repeated 1,000–10,000 times. How-
ever, this increased processing time is not a problem in practice,

as for typical sample sizes a desktop computer can run a per-
mutation test for neuroimaging data in less than a minute (27,
43). Although we note that metaanalysis can play an important
role in teasing apart false-positive findings from consistent re-
sults, that does not mitigate the need for accurate inferential
tools that give valid results for each and every study.
Finally, we point out the key role that data sharing played in this

work and its impact in the future. Although our massive empirical
study depended on shared data, it is disappointing that almost
none of the published studies have shared their data, neither the
original data nor even the 3D statistical maps. As no analysis
method is perfect, and new problems and limitations will be cer-
tainly found in the future, we commend all authors to at least
share their statistical results [e.g., via NeuroVault.org (44)] and
ideally the full data [e.g., via OpenfMRI.org (7)]. Such shared data
provide enormous opportunities for methodologists, but also the
ability to revisit results when methods improve years later.

Materials and Methods
Only publicly shared anonymized fMRI data were used in this study. Data
collection at the respective sites was subject to their local ethics review boards,
who approved the experiments and the dissemination of the anonymized data.
For the 1,000 Functional Connectomes Project, collectionof theCambridge data
was approved by the Massachusetts General Hospital partners’ institutional
review board (IRB); collection of the Beijing data was approved by the IRB of
State Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal
University; and collection of the Oulu data was approved by the ethics com-
mittee of the Northern Ostrobothnian Hospital District. Dissemination of the
data was approved by the IRBs of New York University Langone Medical
Center and New Jersey Medical School (4). The word and object processing
experiment (36) was approved by the Berkshire National Health Service Re-
search Ethics Committee. The mixed-gambles experiment (35), the rhyme
judgment experiment, and the living–nonliving experiments were approved
by the University of California, Los Angeles, IRB. All subjects gave informed
written consent after the experimental procedures were explained.

The resting-state fMRI data from the 499 healthy controls were analyzed in
SPM, FSL, and AFNI according to standard processing pipelines, and the
analyses were repeated for four levels of smoothing (4-, 6-, 8-, and 10-mm
FWHM) and four task paradigms (B1, B2, E1, and E2). Random group analyses
were then performed using the parametric functions in the three softwares
(SPM OLS, FLAME1, FSL OLS, 3dttest, 3dMEMA) as well as the nonparametric
permutation test. The degree of false positives was finally estimated as the
number of group analyses with any significant result, divided by the number
of group analyses (1,000). All of the processing scripts are available at https://
github.com/wanderine/ParametricMultisubjectfMRI.
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