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I provide a selective review of the literature on the multiple testing problem in fMRI. By drawing connections
with the older modalities, PET in particular, and how software implementations have tracked (or lagged be-
hind) theoretical developments, my narrative aims to give the methodological researcher a historical per-
spective on this important aspect of fMRI data analysis.
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Introduction

In the whimsically titled letter “Holmes & Watson reply to
Sherlock” (Holmes et al., 1998) my colleagues and I made a serious
critique of Halber et al. (1997), a paper evaluating thresholding
methods for PET activation data. The paper directly compared a non-
parametric permutation method (named “Sherlock”), which provided
inferences fully corrected for multiple testing, to uncorrected Pb0.05
inference, finding that the latter method was to be preferred for its
power. In response to our letter, the paper's authors defended the
uncorrected approach as the (then) default setting in the SPM1 soft-
ware and claimed that it had been used in “approximately 1200
publications”.

Over a decade later, and one “Voodoo correlations” (Vul et al., 2009)
imbroglio and post-mortem ichthyological fMRI study (Bennett et al.,
2011) later, it seems everyone agrees that (a) correcting inferences for
the search over the brain is essential and (b) such corrections are not
rights reserved.
consistently utilized in fMRI. Hopefully some historical perspective
can strengthen the discipline's resolve to uphold good statistical
practice.

What follows is a highly selective review of the literature on themul-
tiple testing problem in fMRI and its antecedents (PET and M/EEG). I
have tried to capture the major landmark publications, and while this
selection is inevitably quirky and personal, I hope it will provide a useful
perspective in this important aspect of fMRI data analysis. See Holmes
(1994) and Petersson et al. (1999) formore careful and detailed reviews
of early work in this area.

The problem

Whether studying brain structure or brain function, using MRI,
PET or M/EEG modalities, the end result of an experiment is typically
a set of statistic values (e.g. T or F values) that comprises an image.
This “image” may be a 2D surface, a 3D volume, or even a 4D movie
of statistics over time. Call T={Ti} the statistic image, with Ti the
value at voxel i. Before even mentioning “multiple testing” we must
define the objects under inference. There are in fact a variety of
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4 People often say “FWE is conservative”, but that's like saying a meter is too short.
FWE is just a measure of false positive risk, a stringent one.

5 The work was circulating in statistics circles well before 1995; see Benjamini
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ways of summarizing a statistic image, including voxel-wise, cluster-
wise, peak-wise and others.

Assessing statistical images: voxels, clusters and peaks

Voxel-wise inference uses a threshold u and classifies voxel i as
“active” if Ti≥u; inference is made on each voxel individually.
Cluster-wise inference uses a cluster-forming threshold uc to define
blobs, i.e. contiguous suprathreshold regions. If S is the size of a clus-
ter, cluster inference consists of retaining all clusters with S≥k for
some cluster size threshold k. For voxel-wise inference, when Ti≥u
we can make a statement about the signal at voxel i. For cluster-
wise inference, when S≥k, we are making a statement about a “ran-
dom set”, the collection of voxels in the cluster. With replication of
our experiment, voxel i still means voxel i, but a cluster will comprise
different voxels if it exists at all.

So what exactly is the interpretation of a significant cluster? I usu-
ally answer “that one or more voxels within that cluster have evi-
dence against the null” (Poldrack et al., 2011); that is, the test can
localize the effect to somewhere within the cluster.2 This lack of pre-
cise spatial specificity is a shortcoming, but voxel-wise inference has
its critics too. Friston and colleagues have argued against voxel-wise
inference (Chumbley and Friston, 2009; Chumbley et al., 2010), say-
ing that for smoothed data a voxel is ill-defined, and only topological
quantities are interpretable, like peaks (local maxima) or clusters. As
peaks, like clusters, are randomly located, and as voxels have reason-
ably compact point spread functions in practice, I counter that voxel-
wise inference remains a useful approach.

Peak-wise inference is based only on local maximum above a
given screening threshold up. Peak-wise is not the same as voxel-
wise inference3 and the inference will depend on the chosen up
threshold. Finally, set-wise methods, based on just the count of clus-
ters, and other omnibus measures can be defined, but they do not
have any localizing power.

Statistics, P's and corrected P's

Once a method for assessing the statistic image is chosen, a test
statistic needs to be defined. For voxel-wise or peak-wise inference,
the statistic value is obvious (just the value of T at the voxel, or the
peak), and for cluster-wise inference this is naturally the number of
voxels in the clusters (though there are other ways; see below).

Based on a test statistic an uncorrected P-value P can be defined.
For example, suppose we are performing voxel-wise inference; for a
randomly (or a priori) selected voxel i, the P-value Pi is the chance
of observing a test statistic Ti as or more extreme, assuming that the
null hypothesis is true. For voxel-wise statistic Ti this is a trivial com-
putation, even possible with a table in the back of a textbook. For a
peak value or cluster size, however, no standard results are available.
Before reviewing the tools imagers used to find uncorrected P-values,
let me first introduce an even greater challenge, the multiple testing
problem.

Whether voxel-wise or cluster-wise, there is a huge multiplicity.
Searching over 100,000 voxels in the brain we expect to find 5000
Pi's smaller than 0.05 even in the null scenario of no activation. Like-
wise, searching over 100 clusters will on average produce 5 uncor-
rected cluster P-values less than 0.05. To account for the multiplicity,
we have to define a measure of error when searching the brain. The
standard measure is the Familywise Error Rate (FWE), the chance of
2 Despite the obviousness of this comment, I know of no formal proof that cluster in-
ference has such strong control of Family wise error. I will make ample use of footnotes
to comment on such minutiae.

3 Jumping ahead, FWE-corrected peak-wise P-values equal FWE-corrected voxel-
wise P-values at the peaks. This is because FWE is determined by the distribution of
the maximal statistic, and the maximum voxel-wise is the maximum peak-wise.
one or more false positives (Nichols and Hayasaka, 2003). FWE is the
quantity controlled by the well-known Bonferroni procedure, and
while it is a sensible measure of false positives, many find it lacks
power.4

The False Discovery Rate (FDR) is a more lenient measure of false
positive risk, defined as the expected proportion of false positives
among detections (Benjamini and Hochberg, 1995).5 My colleagues
and I (Genovese et al., 2002) introduced FDR to functional neuroim-
aging, and I see its wide embrace as a sign of how hungry users
were for calibrated multiple testing procedures that are more power-
ful than FWE.

Another less-used alternative to FWE is the expected number of
false positives (Bullmore et al., 1996). This measure is used in the
CamBA software6 to control the expected number of false positive
clusters at just below 1.0.

For either FWE or FDR, you can define corrected P-values for a par-
ticular Ti (or peak value or cluster size): The smallest FWE (or FDR) α
level that will just reject the null hypothesis for Ti.

And what about poor old uncorrected Pb0.001, with perhaps
some cluster threshold like S>10 voxels? In principal, the false posi-
tive risk of any fixed heuristic could be validated with a sufficient
amount of real null data, and then the heuristic could safely be ap-
plied to data with the very same characteristics. But if any aspect of
the data changes — voxels size smoothing FWHM, number of slices
or their orientation orientation — then the false positive risk will
vary in some undetermined way. Hence, the best practice dictates
the use of multiple-testing corrected inferences that have the same
interpretation for all data.

Finally, it should be noted that an entirely different approach to
inference is taken with the Bayesian paradigm (see Woolrich, 2011
for a review). Instead of pretending the null hypothesis is true in
order to compute P-values, the Bayesian approach focuses on esti-
mating and characterizing the uncertainty of parameters in the non-
null state. While some have argued that a Bayesian approach avoids
the multiple testing problem altogether (Friston et al., 2002),7 it re-
mains a problem if you consider a Bayesian decision theoretic frame-
work with a loss function measuring false positive risk over the image
(see, e.g., Muller et al., 2006).
A preview of solutions

The crux of methodological research in neuroimaging inference
has been how to find thresholds on test statistics that control a spec-
ified error rate. Before a historical tour of this research, it's helpful to
lay out the three broad types of approaches that have been used.

The best known (if least understood) approach is Random Field
Theory (RFT). In rough terms, RFT uses the smoothness of the image
noise to predict the behavior of extreme values of voxel-, peak- and
cluster-wise statistics. The underlying theory is elegant and has con-
nections to topology but requires that, in addition to the usual Gauss-
ian assumption, the image data behave like a continuous random
process (i.e. are smooth).

The other frequently used approach is Monte Carlo (MC). By esti-
mating basic features of the data under the null hypothesis, like image
smoothness, MC repeatedly simulates null replicates of the data. The
observed test statistics (peak, cluster, whatever) can then be compared
(2010) for some history.
6 http://www-bmu.psychiatry.cam.ac.uk/software/.
7 The reasoning is as follows: Because posterior inferences are a function of the ob-

served data, which is fixed, there is no random outcome from which a FWE probability
can be computed. Put another way, the posterior probability for an inference computed
for one voxel is the final statement based on that dataset and no “correction” is
applicable.

http://www-bmu.psychiatry.cam.ac.uk/software/


11 http://www.fmrib.ox.ac.uk/fsl.
12 http://afni.nimh.nih.gov.
13 For General Linear Model (GLM) statistic maps, care must be taken that smooth-

Table 1
KJF on KJW. KeithWorsley and Karl Friston authored foundational papers in the 1990s on inference for neuroimaging. We lost Keith suddenly in 2009, so I asked Karl to comment on
how it was that a psychiatrist and a statistician came to be friends and collaborators.

“Keith and I first met in 1990 at a workshop at Harvard Medical School. I was chaperoned by Richard Frackowiak and Keith by Alan Evans. Alan had famously recruited Keith
after finding him collecting maple leaves on the campus of McGill University—in the fond hope of finding something interesting to study! Keith had seen the potential of
random field theory and had been sent a final draft of my 1991 paper (Friston et al., 1991). I remember him being very excited by the prospect of applying random field theory
to neuroimaging data. He was also bemused and intrigued by the convergence of the general theory of stochastic processes and level sets (my 1991 paper) and random field
theory proper (his paper, Worsley et al., 1992).I also recall him being exercised by a mild discrepancy between the two formulations; the discrepancy boiled down to a square
root two factor that he could not resolve, and remains unresolved two decades later.

We became firm friends over the ensuing months, or more exactly ‘pen-pals’. Getting emails from Keith was a bit like playing Russian roulette. Most of the time they were
insightful, reassuring and helpful but—occasionally—he would start with ‘I think there's a small problem…’. What he meant was that there was a substantial conceptual or
technical problem that would take at least six months hard work to resolve.

The substantial exchanges between us often weren't reflected in publications or the rhetoric we each developed, perhaps to underscore the distinct contributions of our
respective groups. It is worth remembering that we were separated not just by the Atlantic but by some esthetic and pragmatic differences. For example, we always
assumed that error variance was regionally specific, but Keith never liked this, because it destroyed some of the simple beauty of implementing the theory. On the other
hand, Keith loved the most advanced graphics software that he could find, whereas we stuck religiously to Matlab despite its very limited graphics support (at that time).

Years later, the intellectual collaboration rested on shared students and fellows, like Jean-Baptiste Poline and Stefan Kiebel. Much of that work is embodied in SPM and has
remained the mainstay of topological inference using random field theory to date.”
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to the simulated null distributions, creating P-values. Just like RFT,
Gaussianity has to be assumed and the smoothness has to be estimated,
but MC doesn't depend on the accuracy of RFT approximations.

Finally, there is the permutation test. Using the data itself, empir-
ical null distributions are created by permuting (or otherwise alter-
ing) the data under the null hypothesis. This approach has the
weakest assumptions and is growing in use, but has limitations, in
particular in dealing with time series autocorrelation and general ex-
perimental designs.

A tour of solutions

Early days

Many “fMRI statistical methods” are in fact generic procedures de-
veloped first for PET. Hence we start with seminal work by Fox and
Mintun (1989), who showed that non-quantitative H2

15O PET8 could
be used to map brain function. As part of that paper they proposed
“Change Distribution Analysis” to determine if there were any effects
in the image. They used the distribution of all local extrema, that is,
the value of local maxima for Ti>0 and all local minima for Tib0
(no screening threshold up). Defining global skew and kurtosis statis-
tics on the distribution of peak values, and using conventional stan-
dard errors9 they produced an omnibus test for activation in the
brain.

Random Field Theory

Change Distribution Analysis lacked any localization power, and of
course there was a need for methods that would assign significance
locally, to each voxel, while still controlling FWE. Friston et al.
(1991) solved this problem using general theory of Gaussian process-
es, working in 2D and assuming equal smoothness in X and Y direc-
tions. Shortly afterwards, Worsley et al. (1992) produced a more
general 3D solution that would define a class of methods: Random
Field Theory. By drawing a connection between the voxel-wise FWE
and the expected Euler characteristic, Worsley created inferences
that accounted for both the volume and smoothness of the search re-
gion. He created the notion of a Resolution Element, or RESEL, a virtu-
al voxel with dimensions equal to FWHMx×FWHMy×FWHMz.10

In the PET data Worsley and colleagues were using, there seemed
to be no evidence for spatially varying variance. Hence the initial
8 Quantitative PET required blood-draws and difficult-to-fit compartmental models.
9 Peak statistics are reasonably assumed independent, allowing application of stan-

dard results.
10 Contrary to intuition and some publications that I shall refrain from citing, a RFT
voxel-wise P-value cannot be seen as a Bonferroni correction based on the number
of RESELs. See Eqs. (30) and (31) of Nichols and Hayasaka (2003).
1992 work assumed the variance estimate could be pooled over the
entire brain, producing a Z statistic image. Others groups found PET
data to have spatially varying standard-deviation, and, in particular,
Friston et al. (1991) used a voxel-wise variance estimate; at the
time there were no results for the resulting T image, so the T was
Gaussianized to create Z results. Worsley and coauthors soon general-
ized his results to account for voxel-wise variance estimation, for T,
and F images (Worsley et al., 1993; Worsley, 1994), though these re-
sults didn't make their way into Friston's SPM until “SPM99” and
FSL11 still uses the Gaussianization. See Table 1 for a tale howWorsley
and Friston came to be collaborators after this potentially fractious
beginning.
Monte Carlo

Voxel-wise thresholding couldn't detect low-intensity, spatially
extended effects. In lieu of theoretical results, a Monte Carlo simula-
tion approach was proposed first for PET (Poline and Mazoyer,
1993; Roland et al., 1993) and then for fMRI (Forman et al., 1995).
Using an estimate of the smoothness of the data, simulated statistic
images under the null hypothesis generate an empirical estimate of
the maximum cluster size, from which cluster size statistics can be
converted to FWE-corrected P-values. This approach is still used
today in the AFNI12 software's alphasim.13 In their first joint work,
Worsley and Friston (and colleagues) used Random Field Theory to
produce closed-form FWE P-values for cluster size statistics (Friston
et al., 1993).

An entire separate review paper is needed to track all the RFT
work produced, but a few highlights include: A unified result for Z,
T, χ2 and F images (Worsley et al., 1996); a solution for the conserva-
tiveness found at low smoothness (Worsley and Taylor, 2005); and a
unified multivariate result from which all other results are special
cases (Worsley et al., 2004). These methods and more are implemen-
ted in surfstat,14 a programWorsley was actively developing until his
death in 2009.

Whether Monte Carlo or RFT, the estimation of smoothness is cru-
cial. Poline et al. (1995) found that if smoothness was estimated from
but a single image (as was done in SPM95), RFT P-values should
have confidence intervals of about ±40%! This uncertainty affects
ness parameter is set from the residuals, using say 3dFWHMx, and not just set equal
to the smoothing kernel applied to the data. Yet further care is needed if a non-GLM
based statistic is used, like with Regional Homogeneity (Zang et al., 2004) or spotlight
(Kriegeskorte et al., 2006) analyses; here, as the statistic image smoothness will be
greater than the residuals' smoothness, the false positive rate will be inflated even if
the residual-based smoothness is used with alphasim.
14 http://galton.uchicago.edu/faculty/InMemoriam/worsley/research/surfstat.

http://www.fmrib.ox.ac.uk/fsl
http://afni.nimh.nih.gov
http://galton.uchicago.edu/faculty/InMemoriam/worsley/research/surfstat
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Monte Carlo P-values to the same or greater degree. Standard practice
now is to estimate smoothness from standardized residual images
(Kiebel et al., 1999), but there remain two different approaches.

Forman et al. (1995) estimated the smoothness based on a discre-
tized Gaussian kernel, where the estimator of Kiebel et al. (1999) is
based on partial differences approximating a continuous random
field's derivatives. While the latter makes no assumption about the
shape of the autocorrelation function—except the existence of 2 de-
rivatives at the origin—it has greater bias at low smoothness.15

Cluster-wise inference captures the spatial nature of the signals,
and suffers from less multiplicity than voxel-wise inference. However
it is not always more sensitive, and Friston et al. (1996) showed that
the power of cluster inference depends on the spatial scale of the sig-
nal relative to the noise smoothness: Focal, intense signals will be
better detected by voxel-wise inference. Thus there is a natural temp-
tation to compute both cluster-wise and voxel-wise results and take
the better of the two. This of course forms a new multiple testing
problem, which will yield more false positives.16 To address this,
Poline et al. (1997) proposed a RFT-based joint cluster size, cluster
peak-height test.

Permutation

Inspired by Blair and Karniski's EEG permutation work (1994),
Holmes et al. (1996) proposed a permutation test for PET that con-
trolled FWE with few assumptions. Based on that work, Holmes and
I created the SnPM17 software, which we thought would quickly be-
come irrelevant as fMRI came to dominate neuroimaging. The prob-
lem was that fMRI times series' autocorrelation violates a basic
assumption needed by permutation, exchangeability. Others had
tackled this problem, by decorrelating the fMRI data using the fit of
a parametric autocorrelation model (Bullmore et al., 1996; Locascio
et al., 1997), however we found this mix of parametric and nonpara-
metric modeling unsatisfactory.18 However fMRI analysis quickly
came to focus on group analysis using a summary statistic approach
(Holmes and Friston, 1999; Mumford and Nichols, 2009), meaning
our PET 1-scan-per-subject permutation methods remained relevant.

In 2001 I was surprised by a OHBM conference poster that showed
RFT voxel-wise thresholds were wildly conservative for small n
(Stoeckl et al., 2001). Despite their widespread use, RFT methods
had actually never been evaluated for use with small sample sizes.19

Using PVW20 consisting of Monte Carlo simulations and real data
comparisons with permutation, we replicated the finding of conser-
vative voxel-wise RFT thresholds (Nichols and Hayasaka, 2003;
Nichols and Holmes, 2001) and also reported on instability of
cluster-wise results (Hayasaka and Nichols, 2003; Hayasaka et al.,
2004).21 Despite these results on the power gains of voxel-wise
FWE permutation inference over RFT, SnPM did not become an inte-
gral SPM tool.22 In FSL, however, the “randomise" software23 has
15 SPM and AFNI use the Kiebel approach, though SPM only uses up to 64 images by de-
fault; FSL uses a version of the Forman approach on the standardized residuals (Flitney et
al., 2000; Jenkinson, 2000).
16 The SPM software encourages profligate exploration of results, showing all possi-
ble types of inferences, while the FSL software only provides users one of voxel-wise
or cluster-wise inferences.
17 http://go.warwick.ac.uk/tenichols/software/snpm.
18 More flexible wavelet decorrelation can whiten better (Bullmore et al., 2001), but
can have problems with simple block designs (Friman and Westin, 2005). Also note
that a randomized experimental design justifies a randomization test with any data
(Raz et al., 2003), though this has limited application.
19 Worsley et al. (1992) used Gaussian simulations to verify his Z results, but these
only applied to the case of pooling variance over the whole brain or very large n.
20 Probability Validation Work.
21 See also later work showing problems with cluster-wise RFT even with n in the
100's (Silver et al., 2010).
22 In part because it remained difficult to use.
23 Initially an exercise for Tim Behrens to teach Steve Smith C++; I gave instructions
from the sidelines.
become a central tool for all voxel-based anatomical analyses. Aside
from overcoming any RFT conservativeness, permutation inference
works in nonstandard settings like Tract-Based Spatial Statistics
(Smith et al., 2006) where tracks are highly irregular and vary in to-
pology from 1-D to 2-D. Permutation also allows consideration of
new test statistics, where no parametric result is available. Examples
include: The smoothed variance T-test (Holmes et al., 1996), cluster-
mass (Bullmore et al., 1999), different peak-cluster combining tests
(Hayasaka and Nichols, 2004), and a completely new cluster-
inspired method, Threshold-Free Cluster Enhancement (Smith and
Nichols, 2009). Permutation even feeds-back into RFT research: We
developed a RFT cluster-mass test (Zhang et al., 2009) only after ex-
tensive experience with permutation showed that it outperformed al-
ternate peak-cluster combining methods (Hayasaka and Nichols,
2004).

Despite my personal enthusiasm for permutation-based inference,
it must be acknowledged that when RFT inference procedures work,
they deliver similar answers at a fraction of the computational effort
of permutation. Indeed, considering that permutation would be the
only approach if RFT had never had been developed, RFT has surely
saved 1000's of years of computation time.

The future

Looking ahead, there is renewed enthusiasm for resampling-based
test as GPU's make order-of magnitude speed-ups (Eklund et al.,
2011), and in particular which make local multivariate methods at-
tractive (Eklund et al., 2011; Nandy and Cordes, 2007).

Predictive analyses and “brain reading” distill inference to a single
accuracy number (Haynes and Rees, 2006) and seem to be a step
away from “brain mapping”. But in practice investigators wish to de-
termine which brain regions are responsible for the predictive power,
and thus we return to a spatial mapping exercise (Kriegeskorte et al.,
2006).

And perhaps the most promising direction is the application of ex-
plicit spatial models to brain image data, for both original fMRI data
(Keller et al., 2008; Xu et al., 2009; Weeda et al., 2009; Thirion et al.,
2010; Kim et al., 2010; Gershman et al., 2011) and meta-analysis
data (Neumann et al., 2008; Kang et al., 2011). These methods can
provide spatial confidence intervals on effects of interest and more
flexible and interpretable model fits.

Finally, I apologize to the authors of scores of papers on fMRI infer-
ence that I have not cited. Sometime in the next 20 years I hope I can
make a more comprehensive review.
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