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 Effect of Resting-State 
Functional MR Imaging Duration 
on Stability of Graph Theory 
Metrics of Brain Network 
Connectivity  1   

  Christopher T.   Whitlow ,  MD ,  PhD  
  Ramon   Casanova ,  PhD  
  Joseph A.   Maldjian ,  MD  

 Purpose: To investigate the effect of resting-state (RS) functional 
magnetic resonance (MR) imaging blood oxygen level–
dependent (BOLD) signal acquisition duration on stabil-
ity of computed graph theory metrics of brain network 
connectivity.

 Materials and 
Methods: 

An institutional ethics committee approved this study, and 
informed consent was obtained. BOLD signal (7.5 min-
utes worth) was obtained from 30 subjects and truncated 
into 30-second time bins that ranged from 1.5 to 7.5 min-
utes. A binarized adjacency matrix for each subject and 
acquisition duration was generated at network costs be-
tween 0.1 and 0.5, where network cost is defi ned as the 
ratio of the number of edges (connections) in a network 
to the maximum possible number of edges. Measures of 
correlation coeffi cient stability associated with functional 
connectivity matrices (correlation coeffi cient standard 
deviation [SD] and correlation threshold) and associated 
graph theory metrics (small worldness, local effi ciency, 
and global effi ciency) were computed for each subject 
at each BOLD signal acquisition duration. Computations 
were implemented with a 15-node 30-core computer clus-
ter to enable analysis of the approximately 2000 resulting 
brain networks. Analysis of variance and posthoc analyses 
were conducted to identify differences between time bins 
for each measure.

 Results: Small worldness, local efficiency, and global efficiency 
stabilized after 2 minutes of BOLD signal acquisition, 
whereas correlation coeffi cient data from functional con-
nectivity matrices (correlation coeffi cient SD and cost-
associated threshold) stabilized after 5 minutes of BOLD 
signal acquisition.

 Conclusion: Graph theory metrics of brain network connectivity (small 
worldness, local effi ciency, and global effi ciency) may be 
accurately computed from as little as 1.5–2.0 minutes 
of RS functional MR imaging BOLD signal. As such, im-
plementation of these methods in the context of time-
constrained clinical imaging protocols may be feasible and 
cost-effective.

 q  RSNA, 2011

Supplemental material:  http://radiology.rsna.org/lookup
/suppl/doi:10.1148/radiol.11101708/-/DC1 
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and compute graph theory metrics. 
These include collecting RS functional 
MR imaging BOLD time course data 
from nodes or defi ned anatomic units 
(regions of interest or voxels), estimat-
ing a correlation coeffi cient matrix be-
tween all nodes to defi ne network edges 
or functional connections, and thresh-
olding the correlation matrix (Cij) to 
generate a binary association or adja-
cency matrix from which graph theory 
metrics are computed ( 18,19 ). RS func-
tional MR imaging BOLD data are col-
lected with a variety of acquisition dura-
tions, but the general duration is 5–15 
minutes ( 20,21 ). The length of time 
required to collect BOLD data can be 
problematic within a constrained clinical 
MR imaging time slot, particularly when 
an imaging protocol includes additional 
relatively long MR sequences, such as 
diffusion-tensor imaging, perfusion im-
aging, or task-based functional MR im-
aging. Long MR sequences can also be 
problematic in populations that are chal-
lenging to examine, such as young chil-
dren and critically ill patients. Recent 
work by Van Dijk and colleagues ( 22 ) 
has suggested that for BOLD data ac-
quisition a duration of approximately 5 
minutes is necessary for stabilization of 
average correlation strengths associated 

lie in various strategic advantages that 
are biologically relevant. Others have sug-
gested that small-world topography pro-
duces optimal organization for rapid syn-
chronization and information transfer 
between brain regions ( 3–7 ). Small-world 
networks demonstrate high local and 
global effi ciency, requiring minimal wir-
ing costs and resulting in balance be-
tween local processing and global inte-
gration ( 3,4,8,9 ). 

 Graph theory network analyses ap-
plied to blood oxygen level–dependent 
(BOLD) data extracted from resting-
state (RS) functional magnetic reso-
nance (MR) images have begun to shed 
light on changes in the central nervous 
system at the level of whole-brain dis-
tributed network connectivity that ap-
pear to underlie a variety of neurode-
generative and psychiatric disorders, 
such as Alzheimer disease, schizophre-
nia, attention defi cit hyperactivity dis-
order, and multiple sclerosis ( 10–17 ). 
The ability to identify disease-associated 
changes in brain connectivity is impor-
tant, as such changes may represent 
functional markers of disease that could 
facilitate better diagnosis and predic-
tion of central nervous system dysfunc-
tion in the future. 

 Several steps are generally necessary 
to construct functional brain networks 

              Mathematical models for compu-
tational network analysis based 
on graph theory have risen to 

the forefront of the investigation of brain 
connectivity as a complex distributed 
system. Graph theoretical analysis yields 
a mathematical description of a network 
that is composed of numerous nodes 
(vertices) related to one another by edges 
(connections). Thus, patterns of con-
nectivity within the brain can be mod-
eled as a network of nodes represent-
ing brain regions or voxels, with edges 
representing interregional or intervoxel 
connections. Networks characterized by 
many short-distance neighboring con-
nections and a few long-distance con-
nections were fi rst described by Watts 
and Strogatz ( 1 ) and called small-world 
networks based on the similar proper-
ties of complex social networks in which 
two people selected at random from a 
large population are connected by a re-
markably short chain of intermediate ac-
quaintances ( 2 ). Just as the double helix 
has been found to underlie the organiza-
tional architecture of genetic structure 
across species, small-world network to-
pologies are being shown to underlie the 
organizational architecture of all man-
ner of complex biologic systems, includ-
ing the fundamental structural and func-
tional architecture of brain connectivity. 
The reason brain connectivity may have 
evolved such network properties could  Implications for Patient Care 

 The relatively short BOLD signal  n

acquisition durations required to 
accurately compute graph theory 
metrics make clinical implemen-
tation of network connectivity 
graph theoretical analyses fea-
sible and cost-effective, even in 
populations that pose challenges 
to the time constraints of routine 
imaging, such as young children 
and critically ill patients. 

 The clinical implementation of  n

network connectivity graph theo-
retical analyses is important, as 
such data may yield functional 
markers of disease that improve 
the ability to diagnose and pre-
dict outcomes associated with 
central nervous system dysfunc-
tion in the future. 

 Advances in Knowledge 

 As little as 2 minutes of resting- n

state functional MR imaging 
blood oxygen level dependent 
(BOLD) signal is suffi cient to 
accurately compute frequently 
used graph theory metrics of 
brain network connectivity; this 
short duration suffi ces even 
though longer acquisition dura-
tions are required for stabiliza-
tion of the functional MR imaging 
time series correlations from 
which the graph theory metrics 
are computed. 

 Stabilization of graph theory met- n

rics occurs along different tem-
poral trajectories than that for 
connectivity correlation matrices. 

  Published online before print  
 10.1148/radiol.11101708 
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 Abbreviations: 
 ANOVA = analysis of variance 
 BOLD = blood oxygen level–dependent 
 CI = confi dence interval 
 Cij = correlation matrix 
 RS = resting state 
 SD = standard deviation 
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with the RS functional MR time series 
data. However, little is known about the 
RS functional MR imaging BOLD data 
collection duration required to generate 
stable and reliable graph theory network 
metrics of brain network connectivity, 
which would be important information 
for practical clinical implementation of 
these methods. 

 In the present study, functional brain 
network connectivity graph theoreti-
cal analyses were applied to a series 
of incrementally longer temporal ep-
ochs of RS functional MR imaging data 
acquired from healthy volunteers. We 
hypothesized that correlations between 
regions of interest in RS functional MR 
imaging data and the corresponding 
graph theory metrics may stabilize along 
different temporal trajectories, requir-
ing different durations of RS functional 
MR imaging BOLD signal acquisition for 
optimal characterization. Such data are 
important for establishing effi cient and 
cost-effective MR imaging protocols nec-
essary to implement network connectiv-
ity graph theoretical analyses in clinical 
practice. The purpose of this study was 
to investigate the effect of RS functional 
MR imaging BOLD signal acquisition 
duration on the stability of computed 
graph theory metrics of brain network 
connectivity. 

 Materials and Methods 

 Participants 
 RS functional MR BOLD data were ac-
quired from the 1000 Functional Con-
nectomes Project, which is a publicly 
accessible database that is available 
for download and retrospective analysis 
( www.nitrc.org/projects/fcon_1000 ) ( 23 ). 
Specifi cally, data from 30 (15 women, 
15 men; mean age, 21.3 years; age range, 
18–25 years) of 198 subjects recruited 
as part of larger studies conducted in 
Beijing, China, were processed and ana-
lyzed. All right-handed undergraduate 
or graduate students at Beijing Normal 
University were eligible for MR imaging. 
Exclusion criteria included a history of 
head injury, psychiatric disorder, neuro-
logic disorder, or alcohol and/or substance 
abuse ( 24–26 ); however, no subjects were 

excluded on the basis of these criteria. 
At least 15 subjects from the total pool 
were excluded because of excessive head 
movement during imaging ( 26 ). All sub-
jects provided written informed consent, 
and this study was approved by the in-
stitutional review board of the State Key 
Laboratory of Cognitive Neuroscience 
and Learning, Beijing Normal Univer-
sity ( 24–26 ). 

 MR Imaging 
 The 30 subjects were examined with a 
3.0-T MR imaging unit (Trio; Siemens, 
Erlangen, Germany) to collect T1-weighted 
structural anatomic (magnetization-
prepared rapid acquisition gradient 
echo) MR and RS functional MR BOLD 
data. RS functional MR imaging was 
performed by using echo-planar imag-
ing (repetition time msec/echo time 
msec, 2000/30; fi eld of view, 200  3  
200 mm; matrix, 64  3  64; 33 axial sec-
tions; 3-mm section thickness; 0.6-mm 
section gap; voxel resolution, 3.125  3  
3.125  3  3.6 mm). The subjects did not 
perform a task, but they were asked 
to keep their eyes closed for the 7.5-
minute RS functional MR examination 
( 24,25 ). 

 Data Processing 
 All data were motion corrected and nor-
malized to a standard template by us-
ing statistical parametric mapping soft-
ware (SPM8;  www.fi l.ion.ucl.ac.uk/spm
/software/spm8 ) ( 27 ). The structural T1-
weighted images were segmented into 
gray matter and cerebrospinal fl uid by 
using the statistical parametric mapping 
new segment tool. Segmentation maps 
were resampled to the space of the nor-
malized functional MR imaging data for 
use as masks in postprocessing. To inves-
tigate changes in network metrics over 
a range of BOLD signal acquisition du-
rations, each subject’s motion-corrected 
normalized 7.5-minute RS functional 
MR imaging run was truncated into 30-
second bins, with BOLD signal acquisi-
tion durations ranging from 1.5 to 7.5 
minutes, thereby generating 13 indi-
vidual RS functional MR imaging data 
sets. Preprocessing of time-binned data 
included regression of motion param-
eters, nuisance signals (white matter 

and ventricular mean signal from the 
segmentation maps), and global signal, 
followed by band-pass fi ltering at 0.01–
0.1 Hz to isolate the low-frequency fl uc-
tuations characteristic of RS connec-
tivity. Data were then parcellated into 
116 regions by using the Automated 
Anatomical Labeling atlas ( 28 ), as im-
plemented with WFU-PickAtlas software 
( www.ansir.wfubmc.edu ) ( 29 ), and masked 
with the gray matter segmentation map to 
limit the nodes to gray matter structures. 
This resulted in an averaged functional 
MR imaging time series of 116 regions 
(nodes) for each subject, which was 
used for subsequent graph theory con-
nectivity analysis. 

 Functional Network Connectivity and 
Graph Theoretical Analyses 
 To establish the presence of functional 
connectivity between the parcellated re-
gions (nodes), the Pearson correlation 
was computed between all pairs of 
node time series to generate a 116  3  
116 Cij for each time bin and subject. 
The Cij was thresholded and dichoto-
mized to generate a binarized adjacency 
matrix for each subject and acquisition 
duration at a range of network costs 
(0.1–0.5) (Appendix E1 [online]), with 
removal of any isolated nodes. Network 
cost is defi ned as the ratio of the num-
ber of edges (connections) in a net-
work to the maximum possible number 
of edges ( 6,30 ). Graph theory metrics 
(small worldness, local effi ciency, and 
global effi ciency) were then computed 
from the adjacency matrix by using 
Matlab 2010a software (MathWorks, 
Natick, Mass), including the Matlab 
Boost Graphics Library, as well as the 
Brain Connectivity Toolbox ( www.brain-
connectivity-toolbox.net ) ( 31 ) in the 
standard fashion ( 18 ) to evaluate whole-
brain functional connectivity for each 
time-binned RS functional MR imaging 
data set at each cost for every subject 
(Appendix E1 [online]). These particu-
lar graph metrics were chosen because 
they have been used to study a variety 
of clinically important neurodegenera-
tive and psychiatric disorders affect-
ing the central nervous system ( 10–
17 ). Computations were implemented 
on a 15-node 30-core computer cluster 
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there was a signifi cant 1.3% difference 
(95% CI:  2 0.0134,  2 0.0011;  P  = .011) 
between the magnitude of global effi -
ciency computed by using 7.5 and 1.5 
minutes of BOLD data ( Fig 1c ). At a 
cost of 0.5, there was a signifi cant 1.1% 
difference (95% CI:  2 0.0117,  2 0.0021; 
 P  = .001) between the magnitude of 
global effi ciency computed by using 7.5 
and 1.5 minutes of BOLD data ( Fig 1c ). 

 We evaluated the effect of RS func-
tional MR imaging BOLD signal acquisi-
tion duration on correlation coeffi cient 
stability associated with functional con-
nectivity matrices (correlation coeffi cient 
SD and correlation threshold) ( Table 2  , 
 Fig 2  ). Plots of these data show that vari-
ability (SD) in the Cij and magnitude of 
the correlation threshold decrease with 
increasing BOLD signal acquisition du-
ration but that there is little change in 
magnitude after approximately 5 min-
utes of data collection. 

 One-way ANOVA revealed a signif-
icant effect of BOLD signal acquisition 
duration on Cij-related SD ( F [12, 389] = 
104.078,  P   ,  .001). Dunnett post hoc 
analyses revealed signifi cant differences 
( P   ,  .01) between correlation SD val-
ues calculated by using 7.5-minute data 
and short acquisition durations ranging 
from 1.5 to 4.5 minutes ( Fig 2a ,  Table 3  ). 

 Two-way ANOVA revealed a signifi -
cant disordinal interaction of signal ac-
quisition duration by cost for the corre-
lation threshold, such that decreases in 
correlation threshold magnitude associ-
ated with longer acquisition durations 
were greater with increasing cost ( F [48, 
1885] = 2.228,  P   ,  .001). The effect size 
associated with this interaction, however, 
was quite small (partial  h  2  = 0.054). 
ANOVA also revealed a main effect of 
BOLD signal acquisition duration on 
correlation threshold magnitude ( F [12, 
1885] = 458.695,  P   ,  .001, partial 
 h  2  = 0.745). Dunnett post hoc analyses 
revealed signifi cant differences between 
correlation thresholds calculated by us-
ing different BOLD signal data collec-
tion durations at all costs, as follows: At 
a cost of 0.1, there were signifi cant dif-
ferences ( P   ,  .017) between correlation 
threshold values calculated by using the 
7.5-minute data and acquisition durations 
of 1.5–4.0 minutes ( Fig 2b ,  Table 3 ). At 

 Results 

 Small worldness, local effi ciency, and 
global effi ciency were computed for ev-
ery subject at each BOLD signal data 
collection duration and cost ( Table 1  , 
 Fig 1  ). Plots of these data have a nearly 
horizontal line, with little difference be-
tween the magnitude of computed graph 
metrics at each data collection dura-
tion. This suggests almost immediate 
graph theory metric data stability. Two-
way ANOVA revealed no signifi cant in-
teraction of BOLD signal acquisition 
duration by cost for small worldness 
( F [12, 1885] = 0.527,  P   .  .05), local 
effi ciency ( F [12, 1885] = 0.1.329,  P   .  
.05), or global effi ciency ( F [12, 1885] = 
1.372,  P   .  .05). There was no signifi -
cant main effect of BOLD signal acquisi-
tion duration on the magnitude of the 
small-world metric at any cost ( F [12, 
1885] = 1.716,  P   .  .05). This indicated 
that small-world values computed by 
using the 1.5-minute BOLD signal ac-
quisition duration are no different than 
those computed by using the 7.5-minute 
BOLD data acquisition duration ( Fig 1a ). 
ANOVA, however, revealed a signifi cant 
but relatively small effect of BOLD sig-
nal acquisition duration on the magni-
tude of local effi ciency ( F [12, 1885] = 
3.639,  P   ,  .001, partial  h  2  = 0.023] and 
global effi ciency ( F [12, 1885] = 3.488, 
 P   ,  .001, partial  h  2  = 0.022]. 

 For local effi ciency, Dunnett post 
hoc analyses revealed signifi cant differ-
ences associated with BOLD signal data 
collection duration at costs of 0.1 and 
0.2 only, as follows: At a cost of 0.1, 
there was a signifi cant 6.8% difference 
(95% confi dence interval [CI]:  2 0.0672, 
 2 0.0078;  P  = .005) between the mag-
nitude of local effi ciency computed by 
using 7.5 and 2.0 minutes of BOLD data 
( Fig 1b ). At a cost of 0.2, there was 
a signifi cant 3.1% difference (95% CI: 
 2 0.0419,  2 0.0001;  P  = .048) between 
the magnitude of local effi ciency com-
puted by using 7.5 and 3 minutes of 
BOLD data ( Fig 1b ). 

 For global effi ciency, Dunnett post 
hoc analyses revealed signifi cant differ-
ences associated with BOLD signal data 
collection duration at costs of 0.4 and 
0.5 only, as follows: At a cost of 0.4, 

to enable analysis of the massive num-
ber of resulting brain networks (approxi-
mately 2000) in a computationally trac-
table time frame. 

 Statistical Analyses 
 Two-way analysis of variance (ANOVA) 
was conducted to explore the affect of RS 
functional MR imaging duration on the 
magnitude of computed network metrics 
at different costs. BOLD signal acquisi-
tion duration (1.5–7.5 minutes in bins 
incrementally larger by 30 seconds) and 
cost (0.1, 0.2, 0.3, 0.4, and 0.5) were 
used as independent variables. Graph 
theory network metrics (small world-
ness, local effi ciency, global effi ciency) 
and correlation coeffi cient threshold 
were used as dependent variables. To 
determine the stability of correlations 
across durations, one-way ANOVA was 
conducted by using Cij-associated stan-
dard deviations (SD), with BOLD signal 
acquisition duration (1.5–7.5 minutes in 
bins incrementally larger by 30 seconds) 
as the independent variable and SD 
as the dependent variable. The SD as-
sociated with correlations of all nodal 
RS functional MR time series provides 
a global measure of stability of the cor-
relation values, as opposed to mean 
correlation values, which would merely 
approach zero. The Cij-associated SD 
was generated as follows: SD was fi rst 
computed for each subject’s Cij (across 
all elements of the Cij) at each BOLD 
signal acquisition duration (time bin). 
This generated 13 SDs (one per time 
bin) for each of the 30 subjects, which 
were used for statistical analysis. SD 
was then averaged across subjects at 
each time bin, reducing the data to 
1 SD per time bin (13 time bins) for 
graphing. This enabled assessment of 
the changes in correlation coeffi cient 
variability (SD) as a function of increasing 
BOLD signal data collection duration. 

 Posthoc analyses with the Dunnett 
test were conducted to further explore 
signifi cant effects revealed by ANOVA 
by using the longest BOLD signal ac-
quisition duration (7.5 minutes) as the 
control group for pairwise comparisons. 
All statistical analyses were performed 
with statistical software (SPSS, version 
16.0; SPSS, Chicago, Ill). 
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costs of 0.2–0.5, there were signifi cant 
differences ( P   ,  .019) between correla-
tion threshold values calculated by using 
the 7.5-minute data and acquisition dura-
tions of 1.5–4.5 minutes ( Fig 2b ,  Table 3 ). 
Taken together, these data suggest that 
correlation data (correlation coeffi cient 
SD and correlation threshold) stabilize 
after 4.5–5 minutes of BOLD signal data 
collection. 

 Discussion 

 In order for functional network con-
nectivity methods to be useful clinically, 
effi cient and cost-effective MR imaging 
protocols must be established that pro-
vide suffi cient data for analysis by using 
the shortest reasonable data acquisition 
duration, which—to our knowledge—has 
not been established for graph theoret-
ical analyses. In the present study, we 
have shown that specifi c frequently used 
graph theory metrics of brain network 
connectivity (small worldness, local ef-
fi ciency, and global effi ciency) may be 
accurately computed from as little as 
1.5–2.0 minutes of RS functional MR 
imaging BOLD signal. This relatively 
short 1.5–2.0-minute BOLD data col-
lection duration for graph metric stabi-
lization is contrasted with the relatively 
longer 5-minute data acquisition dura-
tion required for stabilization of the cor-
relation coeffi cient output. In particular, 
these data are consistent with our hy-
pothesis that the correlation coeffi cient 
data from the Cij and the correspond-
ing computed graph theory metrics sta-
bilize along different temporal trajec-
tories, and they suggest that different 
RS functional MR imaging BOLD sig-
nal acquisition durations may be used 
depending on the outcome of interest. 
Although these data were consistent 
with our proposed hypothesis, the mag-
nitude of difference in BOLD collection 
duration required for data stability be-
tween the correlation and graph theory 
output was somewhat unexpected. One 
possible explanation for the relatively 
rapid stabilization of the graph theory 
data are that the intrinsic relationships 
between ROIs that underlie the graph 
theory output are present within the 
Cij at the earliest time points, despite  Ta
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increased and small worldness decreased 
as cost increased. The magnitude of lo-
cal effi ciency, global effi ciency, and small 
worldness at each cost were similar to 
values reported for healthy subjects in 
prior studies in which these graph the-
ory metrics were used ( 3,4,30,32,33 ). 
Interestingly, the difference between 
global effi ciency and cost reached a max-
imum at a cost of 0.2, as reported by 
Achard and Bullmore ( 3 ), who used a 
wavelet-based approach to graph theory 
analysis. As such, a cost of 0.2 or 0.3 may 
be an appropriate choice to apply in fu-
ture clinical investigations in which graph 
theoretical analyses are used. Additional 
studies, however, may be necessary to 
determine the optimal cost with which 
to investigate abnormal brain networks. 

 The present data enabled us to con-
fi rm previous fi ndings reported by Van 
Dijk and colleagues ( 22 ); this suggests a 
minimum BOLD data collection duration 
of approximately 5–6 minutes for stabili-
zation of average correlation strengths, 
even though the techniques used to evalu-
ate the correlation data in the Van Dijk 
et al study were different from the tech-
niques used in our study. In the Van 
Dijk study, stability between default, 
attention, and reference networks was 
evaluated by using RS functional MR 
imaging BOLD data collected between 
2 and 12 minutes. Correlation strengths 
within and between default, attention, 
and reference networks were shown to 
stabilize after acquisition of approxi-
mately 5 minutes of BOLD data ( 22 ). 
Noise in the correlation data defi ned as 
spurious correlations also decreased in 
approximate proportion to the square 
root of the sampling time, reaching stable 
levels after approximately 5–6 minutes 
of BOLD signal acquisition ( 22 ). Rather 
than evaluate correlation strengths be-
tween specifi c subnetworks and changes 
in spurious correlations as did Van Dijk 
and colleagues, we evaluated variability 
within the overall correlation matrices 
by identifying changes in SD across ac-
quisition durations, which also stabi-
lized after acquisition of 5 minutes of 
BOLD signal. 

 This study had limitations. RS func-
tional MR imaging data used in this study 
were collected with a 3.0-T MR imaging 

connectome data sets ( www.nitrc.org
/projects/fcon_1000 ) can provide a rich 
resource for further investigation of the 
temporal dynamics underlying network 
stabilization. 

 In the present study, we evaluated 
changes in correlation threshold associ-
ated with increasing BOLD signal acqui-
sition duration as another method with 
which to evaluate differences between 
the temporal trajectory of correlation 
stabilization. Similar to the Cij-related 
SD stabilization results, these data sug-
gest that correlation threshold also sta-
bilizes at 4.5–5 minutes. It is possible 
that the magnitude of variability within 
the correlation coeffi cient data may drive 
the changes in the cost-related thresh-
old. As such, when variability in the 
Cij is high, a correlation coeffi cient of 
greater magnitude is required to main-
tain a constant number of edges for each 
cost. 

 In this study, we used specifi c net-
work costs to identify appropriate cor-
relation thresholds. Such application of 
cost is useful, as it facilitates compari-
son of data across individual subjects by 
generating comparable networks of 
equivalent size. Costs from 0.1 to 0.5 
span the range of meaningful networks 
for RS functional MR imaging data and 
were chosen for this investigation on 
the basis of costs commonly described 
in the literature ( 3,4,30,32,33 ). In the 
present study, local and global effi ciency 

the relatively high magnitude of corre-
lation coeffi cient variability. The signal 
used to calculate graph metrics may be 
much higher than the noise (variability) 
within the Cij across all data collection 
durations. Our preliminary analyses of 
bin-to-bin differences in network archi-
tecture suggest up to an 80% common-
ality in edges at a particular cost, even 
between the earliest time bins. The 

 Figure 1 

  

  Figure 1:  Graphs show magnitude (mean  6  SD) 
of  (a)  small worldness,  (b)  local effi ciency, and  (c)  
global effi ciency plotted by duration of BOLD signal 
acquisition (1.5–7.5 minutes in 30-sec bins) for 
each cost (0.1, 0.2, 0.3, 0.4, 0.5). Red-fi lled shapes 
indicate signifi cant differences in the magnitude of 
a graph metric associated with a given BOLD signal 
acquisition duration compared with the magnitude 
of the same graph metric when computed by using 
7.5 minutes of BOLD data. These data form nearly 
horizontal lines, with little difference between the 
magnitude of the computed graph metrics at each 
data collection duration. Specifi cally, at higher costs 
(0.3–0.5), there is rapid stabilization in the magni-
tude of small worldness and local effi ciency by 1.5 
minutes and stabilization in the magnitude of global 
effi ciency by 2.0 minutes.   
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