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Abstract
Intracranial pressure monitoring (ICP) is based on the doctrine proposed by
Monroe and Kellie centuries ago. With the advancement of technology and
science, various invasive and non-invasive modalities of monitoring ICP continue
to be developed. An ideal monitor to track ICP should be easy to use, accurate,
reliable, reproducible, inexpensive and should not be associated with infection or
haemorrhagic complications. Although the transducers connected to the extra
ventricular drainage continue to be Gold Standard, its association with the
likelihood of infection and haemorrhage have led to the search for alternate non-
invasive methods of monitoring ICP. While Camino transducers, Strain gauge
micro transducer based ICP monitoring devices and the Spiegelberg ICP monitor
are the emerging technology in invasive ICP monitoring, optic nerve sheath
diameter measurement, venous opthalmodynamometry, tympanic membrane
displacement, tissue resonance analysis, tonometry, acoustoelasticity, distortion-
product oto-acoustic emissions, trans cranial doppler, electro encephalogram,
near infra-red spectroscopy, pupillometry, anterior fontanelle pressure
monitoring, skull elasticity, jugular bulb monitoring, visual evoked response and
radiological based assessment of ICP are the non-invasive methods which are
assessed against the gold standard.

Key words: Intracranial pressure increase; Craniocerebral trauma; Subarachnoid
hemorrhages
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Core tip: Although, over the last few decades, intracranial pressure monitoring (ICP)
monitoring has become the standard of care, invasive methods are a health-resource
intensive modality and are associated with chances of haemorrhage and infection. In
terms of accuracy and reliability, the intraventricular catheter systems still remain the
gold standard modality. Recent advances have led to the development of non-invasive
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techniques to monitor ICP, but further evidence is needed before it becomes an
alternative to invasive techniques. Apart from primary brain injury due to raised ICP,
secondary brain injury can occur due to ongoing micro and macro vascular dysfunction
in the face of apparently normal ICP.
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INTRODUCTION
The concept of monitoring the intracranial pressure (ICP) as an indicator of dysfunc-
tional intracranial compliance can be thought to be a practical approach to a historical
doctrine proposed by Monroe and Kellie centuries ago[1-3]. Simplistically, Monroe and
Kellie likened ICP to a mild positive pressure created by the brain, cerebral blood
volume and cerebrospinal fluid (CSF) in a semi-rigid skull box. These components
normally compensate for changes in each other, however, when this compensatory
reserve is exhausted, potentially catastrophic neurological sequelae of intracranial
hypertension occurs. Such perturbations of intracranial compliance occur in a variety
of brain insult pathologies such as traumatic brain injury (TBI), intracranial space
occupying  lesions  (ICSOL),  intracranial  heamorrhage  (ICH)  and  subarachnoid
haemorrhage (SAH). Hence, monitoring of intracranial pressure assumes importance
in the aforementioned diverse neurologically injured population as an indication for
commencement of ICP control measures as well as in risk stratification, prognosti-
cation and assessing response to therapy.

ICP monitoring as a novel modality was introduced to the medical fraternity by
Guillaume and Janny in 1951[4]. However, the credit of popularizing ICP monitoring
goes to Lundberg and his colleagues who systematized and established the protocol
for its use in 1960[5]. ICP monitoring was more of a research tool for the ensuing three
decades till its use in neurointensive care became an established practice following
recommendations for its use in brain trauma foundation guidelines which were first
published in 1995 and subsequently modified in 2016[6-9].

The aim of this review is to establish the pathophysiological basis of ICP moni-
toring, the physicality of such monitoring, the various brain injury states where it is
used as well as a look at the armamentarium of modalities now available to have an
idea  about  intracranial  compliance.  We also  take  a  look  at  the  evidence  for  the
usefulness of such monitoring in clinical practice in terms of influencing outcome and
sequelae in brain injured patients.

ICP – THE CURVE AND SOME IMPORTANT VALUES
As is evident from the already discussed Monroe-Kellie doctrine, there is an existing
volume of  reserve in the brain which is  around 60-80 mL in young persons and
approximately 100-140 mL in geriatric  population[10].  This  surprising paradox in
intracranial compliance can be explained by ongoing cerebral atrophy with age. The
volume pressure  curve  denoting  the  relationship  between  ICP  and  intracranial
volume is depicted in the Figure 1. The normal values of ICP are elucidated in the
Table 1.

When pathological conditions cause an increase in intracranial volume, the initial
intracranial volume expansion till 30 mL is well compensated by CSF and venous
blood movement out of the cranial vault.  The compressibility of the constituents
which are expanding determines the final intracranial compliance. For example, blood
and CSF excess in the brain (intracranial haemorrhage and hydrocephalous) results in
a steep curve owing to their incompressible nature. The volume pressure relationship
is much more gradual when compressible brain parenchyma is involved (tumours
and ICSOLs).

ICP WAVEFORM: PHYSIOLOGICAL BASIS AND

WJCC https://www.wjgnet.com July 6, 2019 Volume 7 Issue 13

Nag DS et al. Intracranial pressure monitoring

1536



Table 1  Normal values of intracranial pressure monitoring

Age group ICP value in mm of Hg

Adults (supine) 5 – 15

Children 3 – 7

Infants 1.5 – 6

PATHOLOGICAL VARIATIONS
The intracranial pressure waveform is pulsatile in nature and correlates with respira-
tory and cardiac cycle (Figure 2).  The amplitude of  the respiratory waves varies
between 2 to 10 mmHg. The wave mirrors changes in intrathoracic pressure with
respiration and increases in ICP obliterate the variation in amplitude. The cardiac
component of the ICP wave correlates with pressure dynamics and its amplitude
varies between 1 to 4 mm of Hg (Figure 2).

The different waves in the vascular ICP waveform are depicted in Figure 3. P1
wave (Percussion wave) reflects the arterial pulses of the carotid plexus into the CSF.
P2 wave (Tidal wave) is thought to represent ICP proper as a correlate of the arterial
pulses reflected off the brain parenchyma. The P3 wave (Dicrotic notch) reflects aortic
valve closure.

Attempts have been made by Hammar et al[11] to use the morphology of the ICP
pulse wave as a surrogate marker of intracranial elastance. They decided that the
systolic part of the vascular ICP waveform reflects arterial activity while the caudal
descending segment denotes the pressure in SVC. Hence when the ICP increases the
caudal part of the ICP waveform (the P2 component) assumes the shape of an arterial
pulse and when there is CVP elevation, the waveform approximate a venous pulse.

When the ICP is elevated, the vascular (cardiac) waveform amplitude increases
while the respiratory waveform amplitude decreases. Other phenomena which are
visible in dysfunctional intracranial compliance include occurrence of P waves as well
as elevation of P2 and rounding off of the waveform (Figure 4). The occurrence of
these phenomena are useful in clinical practice in that these alert the neurophysician
to initiate ICP control measures on an urgent basis. It is pertinent to note here that
increased ICP can produce characteristic waveform variously classified by Lundberg
into A, B and C waves[12].

Lundberg A waves are the ones which denote highest rise in ICP (50-100 mmHg).
They are generally indicative of high degree of cerebral ischemia and impending
brain herniation and persist for 5 to 10 min (Figure 5).

Lunenburg B waves occur for a lesser period of time (1 to 2 min), the ICP elevation
or not as much, 20 to 30 mm Hg, and are rhythmic in nature. They indicate evolving
cerebral injury causing a gradual increase in ICP (Figure 5)[13,14]. Lundberg C waves
correlate  with  blood  pressure  fluctuations  brought  about  by  baroreceptors  and
chemoreceptor reflex mechanisms and have no clinical significance.

ICP MONITORING: BASIS OF INTERPLAY WITH CEREBRAL
PERFUSION PRESSURE
The basic idea of the utility of ICP monitoring lies in utilizing it as a means of predic-
ting and preventing inordinate cerebral perfusion pressure (CPP) and the relationship
between the two in the given formula: CPP = mean arterial pressure (MAP) – ICP.

The role of CPP has been reinforced over the last two decades. Earlier, dehydrating
the brain was considered sacrosanct to the management of brain injured states. With
the evidence of cerebral ischemia playing a central role in secondary brain injury, CPP
maintenance has now assumed a more central role[15].  However, there are certain
caveats to CPP guided management of brain injury. Overzealous attempts to maintain
CPP has resulted in cerebral hyperemia and vasogenic edema, especially in non-
reactive  cerebral  vasculature.  Such  means  also  put  an  inordinate  stress  on  the
myocardial  functioning of  such patients  resulting in heart  failure  and attendant
cardio-respiratory perturbations. In the light of aforementioned complications, recent
evidence has witnessed a paradigm shift from the initial CPP aim of 70 mm Hg to an
easily attainable and safer CPP of 60 mm of Hg[16,17].  A bone of contention in ICP
monitoring is whether efforts to keep ICP below a certain value were actually benefi-
cial to the outcome or not. The initial thinking was that as long as the CPP was taken
care of, intracranial pressure was of no consequence[18].
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Figure 1

Figure 1  The relationship between intracranial pressure and volume. ICP: Intracranial pressure.

However, studies debunked this logic, showed increased ICP had inherent toxic
effects on the brain independent of perfusion, and large trials established 20 mm Hg
as the cut off for intracranial hypertension[19]. Newer evidence in the most recent Brain
Trauma Foundation guidelines have pushed this cut off higher to 22 mm of Hg[9].

INDICATIONS OF ICP MONITORING
ICP monitoring has been variously explored as a diagnostic and therapeutic modality
in various pathological conditions culminating in neurological injury (Table 2). There
is  a  paucity  of  evidence  currently  to  formulate  universally  excepted guidelines.
However, indications for ICP monitoring in current clinical practice are often institu-
tion and neurophysician specific[20-23]. Traumatic brain injury is a neurological injury
subset in which there has been substantial amount of work as far as ICP monitoring is
concerned. The American Brain Trauma Foundation (BTF) guidelines set out clear
indications for ICP monitoring in TBI. In patients with severe TBI with a normal CT
scan, ICP monitoring is indicated if two or more of the following features are noted at
admission: (1) Age over 40 years, (2) Unilateral or bilateral motor posturing, or (3)
Systolic blood pressure < 90 mmHg[9]. Based on the quality of evidence available (one
Class 1, four Class 2 and nine Class 3 studies) the foundation recommends (Level II B)
the use of ICP monitoring in patients of TBI to reduce in-hospital and 2-wk post-
injury mortality[9]. A pertinent thing to note is that the new BTF guidelines set 22 mm
Hg as the lower limit for intracranial hypertension while the limit in the previous
guidelines  was  20  mmHg[9].  In  addition,  it  is  important  to  consider  that  for  ICP
monitoring,  it  is  also  important  to  consider  the  most  useful  location  of  the  ICP
monitor as well as the impact of local intracranial pressure gradients.

Regarding local pressure gradients in the brain, it is relevant to note that these exist
even in physiological conditions. There have been studies across a wide spectrum of
pathologies causing neurological injury like SAH, TBI, hydrocephalus and ICH[24-27].
Studies have revealed that amongst various subsets, local pressure gradients in the
brain are significant in the subset of TBI, irrespective of the presence or absence of
mass lesion[28-31].

ICP MONITORING DEVICES: THE STANDARDS AND THE
GOLD STANDARD
As discussed earlier, there is a plethora of ICP monitoring devices, both invasive and
non-invasive[32]. The multitude of devices and technology available for ICP monitoring
has necessitated formulation of  minimum standards for an ICP monitor.  (1)  The
device pressure range should be between 0 to 100 mm Mercury;  (2)  Its  accuracy
should  be  ±  2  mm Mercury  in  the  range  of  0  to  20  mm Mercury;  and (3)  In  the
pressure range of 20-100 mm, the maximum allowable error Hg should be 10%.

An ideal monitor to track ICP should be easy to use, accurate, reliable, reprodu-
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Figure 2

Figure 2  Normal intracranial pressure trace showing the vascular and respiratory pulse. ICP: Intracranial
pressure.

cible,  inexpensive  and  should  be  associated  with  minimal  infections  and
haemorrhagic  complications.  Amongst  all  devices,  EVD  systems  are  presently
considered as the benchmark devices to monitor ICP. Invasive transducers are reliable
and accurate; however cost and access to technology are pressing issues limiting their
widespread use. Subarachnoid, epidural and subdural locations are currently out of
favor.  Intraparenchymal  pressure  monitoring  systems  are  relevant  in  slit  like
ventricles  (paediatric  age  group)  and  swollen  brain  conditions.  Infections  and
hemorrhagic complications are associated with invasive monitoring modalities and
have  been  responsible  for  driving  a  lot  of  technology  search  for  non-invasive
modalities. The other major reasons why non-invasive ICP monitoring technology has
evolved so much research interest is to discover a logistically and financially lighter
alternative to invasive ICP modality without sacrificing the reliability, accuracy and
reproducibility of invasive methods.

INVASIVE ICP MONITORING
The  credit  for  demonstrating  the  feasibility  of  measuring  intracranial  pressure
invasively goes to Lundberg way back in 1960[5]. There has been an advent of various
methods of monitoring ICP directly since then and each of them has its own unique
set of shortcomings and desirable properties.

It  is  pertinent  to  note  that  intraventricular  catheters  and parenchymal  micro-
transducers  are  the  techniques  which  are  most  commonly  used  in  present  day
neuroscience specialties and hence will be discussed in more detail in our review.

INTRAVENTRICULAR PRESSURE MONITORING DEVICES
The idea of placing a catheter directly into the ventricles through a burr hole is a very
simple but effective premise in terms of reliability. So much so that,  this method
though the oldest  of  the  described technique,  still  remains  the  gold standard to
measure intracranial compliance and also to standardize other methods of measure-
ments[20,32-36].

The technique, also known as the EVD technique, consists of connecting the cath-
eter in either of the ventricles with an external strain gauged fluid coupled device.
Such an assembly offers the advantage of re-calibration. While the reference point for
such calibration ideally should be the Foramen of Monroe, normally the external
auditory meatus is chosen as the anatomical landmark for convenience. In addition to
monitoring ICP, EVD placement offers additional advantage in the form of facilitating
therapeutic  drainage  of  CSF,  intrathecal  administration  of  drugs  (antibiotics,
thrombolytics) and drainage of Intraventricular hemorrhage. However, in some cases,
therapeutic CSF drainage especially in the presence of concomitant intracranial space
occupying lesion has been associated with cerebral herniation[37-39].

The traditional  approach for  EVD placement  has  been classically  through the
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Figure 3

Figure 3  Normal intracranial pressure waveform showing the P1 (Percussion wave), P2 (Tidal wave) and P3
(Dicrotic notch). ICP: Intracranial pressure.

coronal burr hole approach, however based on individual neurosurgeon’s prefe-
rences, other sites can be chosen as well[40]. Either the ipsilateral lateral ventricle or the
third ventricle is the preferred site and owing to its non-dominance in the majority of
the population[41]. Misplacement of the catheters (extraventricular, parenchymal) have
been reported as has been inadvertent injury to cerebral structures such as basal
ganglia, thalamus, internal capsule[42-44]. Kinks, bubbles, clots, tissue debris as well as
infectious complications because of repeat surgery also pose a common impediment
in the accurate recording of  an ICP waveform and should be routinely screened
for[45,46].

Technically EVD placement may be challenging in patients of young age group
owing to narrow ventricular system. In contrast, atrophy induced widened ventricu-
lar systems in older age groups also cause difficulty in placement of EVD[5]. Though it
appears  to  be  an  innocuous  surgical  procedure,  haemorrhage  and  infectious
complications are common. While the incidence of haemorrhage is variably high in
different case series, detection of haemorrhage was more in institutions routinely
performing CT scans after  the procedure[47].  Thankfully significant  haemorrhage
causing morbidity and mortality occur only in fewer proportion of patients (0.9 –
1.2%)[42,47,48].

Similar to haemorrhage, infectious complications following EVD placement show a
wide reported variance amongst studies (1%-27%)[49,50]. The spectrum of infectious
complications range from self-limiting indolent skin site infections, infections of the
meninges  and  ventricular  systems  of  the  brain  to  florid  and  often  fatal  septi-
cemia[42,49,50].  Intra-ventricular  haemorrhage,  sub-arachnoid  haemorrhage,  CSF
contamination following a breach in the bony cranial vault, as well misplacement of
EVD are other factors predisposing to EVD related infectious complications[43-45,50].
Various  modalities  such  as  use  of  antibiotic  and  silver  impregnated  catheters,
subcutaneous placement of catheters, minimal mechanical disruption of the EVD
setup, shortening use of EVD to less than five days and use of sterile techniques in an
operating room setup have been shown to reduce infection rates[46,49,51-54]. At present
evidence does not support the routine change of catheters or prophylactic antibiotics
and it seem prudent to refrain from sampling CSF on a routine basis[46,50].

To summarize, EVD placement in the ventricle remains a highly reliable option for
measuring intracranial compliance making it a gold standard technique. Care should
be taken to minimize morbidity of infections and haemorrhagic complications as well
as mechanical disruption in the catheter setup.

OTHER INVASIVE MODALITIES
Other modality to directly monitor ICP in the present era of neurosciences uses the
giant strides in micro-transducer technology. There are various kinds of devices, for
example,  fibreoptic  strain  gauge  and  pneumatic  sensor  devices  which  use  the
aforementioned technology, and an attempt has been made to present information
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Figure 4

Figure 4  Schematic diagram of the changes in intracranial pressure waveform in intracranial hypertension.
ICP: Intracranial pressure.

about  them  in  order  of  popularity,  level  of  evidence  and  other  salient  points
precluding  their  use.  Numerous  anatomic  locations  such  as  brain  parenchyma,
epidural and subdural spaces as well as the subarachnoid space have been explored to
monitor ICP. The most common location of placement of microtransducers in the
routine practice is the right frontal cortex parenchyma, although other sites are also
selected in brain parenchyma depending on loco-regional pathology in the brain[42].

Micro-transducers have exhibited a good deal of correlation with intraventricular
devices. They offer advantage over EVD in ease of handling and the fact that readings
are  not  influenced  by  patient  positions.  The  absence  of  fluid  coupled  system
ameliorates the risk of infection and simplicity in the surgical maneuvering required
for placement translates to lesser haemorrhagic complications. Also, the incidence of
pressure waveform damping and measurement artefacts is lesser than fluid coupled
devices such as EVD[42,55].

In addition to the drift in the system which sets in on prolonged use, the limitations
with intraparenchymal transducer technology include an inability to recalibrate,
institute concomitant CSF drainage as well as inability to predict global ICP [55].

CAMINO TRANSDUCERS
This consists of a fibreoptic transducer which uses a diaphragm and a microprocessor
driven amplifier  to  detect  changes  in  light  signal  intensity  to  calculate  ICP and
represent  it  both  as  a  waveform  and  a  number[56].  The  catheters  are  single  use,
involves an expensive set up and prone to damage during insertion in uncooperative
patients. A daily baseline drift of about 0.3 mm Hg occurs routinely[56-58]. Available
evidence suggests that the significant infectious and haemorrhagic manifestations are
negligible[57,59].The technical  errors  have been mostly attributed to  dysfunctional
fibreoptic cables[56,57].

STRAIN GAUGE MICRO TRANSDUCER ICP MONITORING
DEVICES
The commonly used Codman microsensor, the Raumedic Neurovent-P and S type
sensors and the most recent Pressio sensor all work on the piezoelectric strain gauze
technology[42].

Codman microsensor is a popular device and extensive studies have established it
as a robust, stable and accurate ICP monitoring system which affords therapeutic
options of CSF drainage when used in conjunction with the ventricular catheter[55]. Its
small size permits its use in the pediatric age group as well as at various anatomical
sites. There is no need for alignment and zeroing, and most importantly, infection and
haemorrhagic complications and negligible[60-62]. The other two recent piezo-electric
sensors, Raumedic Neurovent-P and S type and Pressio sensor have demonstrated
similar efficacy and safety profile[63,64]. Drift continues to remain a common problem
across all three devices, however newer devices have performed better in comparison
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Figure 5

Figure 5  Schematic presentation of Lundberg A waves and Lundberg B waves. ICP: Intracranial pressure.

to the Codman set up[61,63,65-68].

SPIEGELBERG ICP MONITOR
These  ICP monitors  use  pneumatic  strain  gauze  technology in  a  balloon tipped
catheter system to measure ICP mostly at subdural or epidural location[69]. Available
evidence  has  shown  compatible  results  to  gold  standard  intraventricular  and
intraparenchymal EVD-based monitors with negligible infections and haemorrhagic
complications[69-71]. The fact that recent versions allow for therapeutic CSF drainage
and have facilities for periodic automatic drift correction, besides being cheaper than
the microtransducers, have made these compliance monitors very popular in neuro
critical care set up[55].

NON-INVASIVE ICP MONITORING
The idea of a non-invasive method of measuring intracranial pressure is captivating,
as at least theoretically, they are expected to be less cumbersome and would avoid
complications such as haemorrhage and infection. Additionally, in certain clinical
scenarios or patient conditions, non-invasive monitoring should be logically a more
reliable alternative. The advent of recent software-based neuro-imaging techniques
and new diagnostic tools has led to the development of a variety of methods which
have been investigated for  their  potential  to  replace  the  gold standard invasive
monitoring.  Ideally  a  non-invasive  ICP  Monitor  should  be  readily  available
throughout the hospital,  be inexpensive, accurate and should also be simple and
convenient to use. There should be minimal contraindications and limitations, so that
it can be of use in all patient populations. There have been various attempts at classi-
fying non-invasive ICP monitors. While some authors have classified according to the
anatomical location of the measured entity, some have classified it according to the
timeframe utilized. We have attempted to present the various modalities for non-
invasive ICP monitoring in terms of relevance and popularity of use.

OPTIC NERVE SHEATH DIAMETER
Measuring the optic nerve she diameter as a mirror of ICP works on the premise that
the intracranial cavity is in direct continuation with the CSF filled subarachnoid space
between optic nerve and the sheath which encloses the optic nerve[72,73]. Hence the
logical extension would be that an increase in CSF pressure would expand the sheath
and this change would be dynamic. It presents neuroscientists an unique window to
measure the optic nerve sheath diameter (ONSD) which would predict dysfunctional
intracranial compliance in real time[74]. It is measured by placing a liner transducer
probe (13-7.5 MHz) over the closed eyelid to obtain an image of the optic nerve sheath
as a hypodense area behind the globe of the eye (Figure 6). The ONSD is measured at
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Table 2  Indications of intracranial pressure monitoring

Indications

Traumatic brain injury

Haemorrhage

- Intracranial haemorrhage

- Subarachnoid haemorrhage

Cerebral edema

Cerebral abscess

Hydrocephalus

Hepatic encephalopathy

Cerebral ischaemia

a depth of  3  mm from the posterior  pole  of  the eyeball  as  this  point  is  the most
reflective of the changes in ICP[75]. While sonographic ONSD measurement is easy to
learn and non-cumbersome, it has certain limitations. It is contraindicated in clinically
commonly encountered lesions such as tumors of the orbit,  inflammation of eye,
sarcoidosis (one of the leading causes of inflammatory eye disease), Graves’ disease,
diseases affecting the optic nerve sheath diameter and patients with legions of the
optic nerve[42] . Despite the limitations, measurement of ONSD has been established as
a useful bedside modality to predict increased intracranial pressure and there have
been a slew of studies in neuroanaesthesia and neuro-intensive care to establish that
ONSD is of actual utility in the management of intracranial hypertension. While it has
been established that  an ONSD increase  in  millimeters  corresponds to  dramatic
changes in ICP value, is it still has a long way to go to replace invasive ICP monito-
ring in terms of sensitivity and specificity. Available evidence suggests an ONSD of
4.5 to 5.5 mm to be indicative of intracranial hypertension[75-85]. In clinical settings,
ONSD has established itself as a reliable screening tool for detection of severe ICP
changes [76,86,87].

Hence, while currently ONSD might not be a highly sensitive and specific mo-
dality, it is more popular as a screening tool for detecting increased ICP, especially in
situations where access to invasive monitoring techniques are unavailable.

VENOUS OPHTHALMODYNAMOMETRY
The idea to measure central retinal vein pressure as a surrogate of ICP was mooted by
Baurmann way back in 1925[88]. However it was only at the turn of the last century that
Firsching et al[89]  explored the idea in a study. They concluded that CRV pressure
measurement or ophthalmodynamometry showed good correlation with invasive ICP
monitoring but it was not useful for continuous monitoring. Subsequent studies by
the  same  author,  Firsching  et  al[90],  have  demonstrated  refined  algorithm-based
measurement  and  superior  technology  whilst  using  ODM.  Although  venous
ophthalmodynamometry can be useful for static measurements, it cannot be used for
continuous monitoring[90]. While it can predict raised ICP with a probability of 84.2%,
in 92.8% of patients, a normal central retinal vein pressure indicates normal ICP[90].
However, while it has been established that ophthalmodynamometry is an exciting
non-invasive modality, it still remains inferior to invasive ICP monitoring [90].

TYMPANIC MEMBRANE DISPLACEMENT
The core concept of using tympanic membrane displacement (TMD) as a simulation of
ICP is based on the proximity of the stapes and the oval window. The assumption is
that the cochlear fluid pressure which would logically be a function of the ICP would
affect the stapedial excursions. Consequently the TMD, which can be measured in
response to auditory stimulation, would present an insight into intracranial pressure
dynamics[78,91].  Available  evidence  for  TMD and tympanic  membrane  infrasonic
emissions  has  shown  them  to  be  a  good  screening  tool  which  can  be  useful  in
assessment and follow-up of patients with increased ICP. However, they do not allow
the establishment of specific ICP values and there are certain prerequisites for the test,
such as intact stapedial reflexes, normal middle ear pressure and a patent cochlear
aqueduct[78,92-94].
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Figure 6

Figure 6  Ultrasound image of optic nerve sheath diameter. The distance “A” is depth from posterior pole of eye
(3 mm) and the distance “B” is the optic nerve sheath diameter.

TISSUE RESONANCE ANALYSIS
This novel ultrasound technique was developed by Michaeli et al[95] and they used the
tissue specific ultrasound resonance of the brain to digitally obtain an echopulsogram
which showed good correlation with invasive ICP. However, following the initial
promise, there have been very few studies, and hence, the level of evidence is pretty
poor.

TONOMETRY
Numerous studies have attempted to correlate intraocular pressure with intracranial
pressure. However majority of the studies have unequivocally proved that tonometry
IOP has very poor correlation with ICP. Present literature does not support it as a
form of non-invasive modality of ICP monitoring[96-102].

ACOUSTOELASTICITY
In a one of its kind experimental model in 2013, Wu et al[103] attempted to use ultra-
sound autoelasticity  of  the  brain  to  predict  ICP.  Whereas  the  correlation  in  the
experimental model was acceptable, follow up studies to validate the same in human
populations are lacking.

DISTORTION-PRODUCT OTO-ACOUSTIC EMISSIONS
As discussed earlier on the segment of TMD, on account of the continuity of CSF with
perilymphatic space, ICP changes can affect otoacoustic emissions from the middle
ear[104,105]. A form of otoacoustic emission named as Distortion-Product Oto-Acoustic
Emissions has consequently been tested as a non-invasive ICP monitor[103,104,106-108].
Studies correlating DPOE with ICP have shown good correlation in experimental
models. Results in human population have vindicated a good correlation with inva-
sive methods[105,106,109,110].

TRANS CRANIAL DOPPLER
Trans  cranial  doppler  (TCD)  as  a  tool  to  monitor  ICP  was  first  described  by
Klingelhöfer  et  al[111,112]  and basically made use of  the TCD derived velocities  for
predicting intracranial compliance. The MCA is commonly used for insonation and
different indices such as Pourcelot resistance index and Gosling's pulsatility index
have been explored to correlate with ICP. Gosling's index has been favored primarily
because it remains unaffected by extraneous factors such as angle of insonation.

The fact that TCD is extensively used in neurosciences has spawned a lot of studies
exploring the reliability in terms of correlation with ICP [113-116]. Studies by Bellner et
al[116]  in  2004,  and  more  recently  by  Wakerley  et  al[117]  in  2014  showed  a  good
correlation between ICP and TCD values, especially at higher values (ICP more than
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20). Wakerley et al[117] in fact went a step further and developed a formula to predict
ICP using PI –ICP = 10.93 X PI – 1.28.

However,  this  formula  still  needs  validation  by  further  independent  studies.
Considerable TCD based studies have shown ambiguous results. Reviews by some
researchers have even questioned the clinical usefulness of this modality to monitor
ICP[78,114,118].  Similar non-encouraging results have been observed in the paediatric
population[119].  Hence while TCD shows initial  promise as a surrogate marker its
routine use as a non-invasive ICP monitor is contentious.

ELECTRO ENCEPHALOGRAM
The neurophysiological premise on which electro encephalogram (EEG) has been
explored to predict ICP is that EEG would change if there are changes in CMRO2
which gets affected in dysfunctional intracranial compliance[120]. Numerous studies
have explored the aforementioned concept and Amantini  et  al[121,122]  showed that
neurophysiology changes actually preceded ICP changes[120-122]. Recently Chen et al[123]

established certain components  of  EEG power spectrum analysis  to  be useful  in
correlating  with  ICP  prediction.  Further  studies  are  warranted  to  establish  the
correlation of EEG spectrum analysis with ICP monitoring.

NEAR INFRA-RED SPECTROSCOPY
Near infra-red spectroscopy (NIRS) is a newly emerging technology which works on
the principle of differential absorption of light in the vicinity of the infrared spectrum
to detect concentration changes in oxygen and deoxyhaemoglobin. In head injured
patients NIRS has been found to detect alterations in cerebral blood flow, cerebral
blood volume, brain tissue oxygenation and ICP[124,125]. Wagner at all also established a
correlation of ICP with an NIRS in children with severe encephalopathy however the
level of evidence for such correlation remains poor[78,126].

PUPILLOMETRY
Way back  in  1983,  Marshall  at  al[127]  established  the  fact  that  an  oval  pupil  was
indicative of high ICP suggestive of imminent brain herniation. They did not indicate
any numerical  value of ICP correlating with pupillary changes.  Advancement of
technology resulted in another study by Taylor et al[128,129] using the novel use of a
pupillometer. This established that pupillary constriction velocity is sensitive to high
ICP and a 10% decrease in pupil size was associated with intracranial hypertension
(ICP more than 20 mm Hg) in all cases. Recently Chen et al[130,131] introduce the concept
of neurological pupillary index using an algorithmic approach to predict ICP with
pupillary  reactivity.  While  they conclusively  proved that  an inverse  association
between ICP and pupillary reactivity exists, a direct correlation to actual ICP values
were not forthcoming. Hence, present day evidence suggests that while pupillometer
can predict and screen for patients with dysfunctional intracranial compliance, it is
inappropriate for continuous ICP monitoring.

ANTERIOR FONTANELLE PRESSURE MONITORING
In infants, the anterior fontanelle is open and presents as a window to measure ICP.
Preliminary studies to explore this were done in the previous century, but they were
largely ambiguous because of unsuccessful fixation of the device[132-135]. Over the years,
various devices  such as  the Rotterdam transducer,  the Fontogram and the Ladd
Intracranial Pressure Monitoring device has been used to measure anterior fontanelle
pressure  and  various  levels  of  reliability  have  been  reported  with  respect  to
correlation with ICP[133-136].  However, currently none of these modalities are being
routinely used. A definite review by Wiegand et  al[137]  has made it  clear that ICP
monitoring in infants is currently not feasible by non-invasive methods.

SKULL ELASTICITY
The  notion  that  measuring  the  minute  expansion  of  the  skull  as  a  reflection  of
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increasing ICP has been explored in animal studies and cadavers in 1985 by Pitlyk et
al[138]. However, the technology which they used could not be further[138]. Yue et al[139]

showed  a  positive  correlation  between  increasing  ICP  and  skull  deformation.
However, the concept of skull elasticity as a non-invasive modality of ICP monitoring
is still in its infantile stages[139,140].

VISUAL EVOKED RESPONSE
York et al[141] have demonstrated a good relationship between intracranial pressure
elevation and a shift in latency of the N2 wave of the visual evoked response. The N2
wave is normally found at 70 ms and is thought to be a cortical phenomenon. It is
therefore likely to be sensitive to potentially reversible cerebral cortical insults such as
ischemia or increased intracranial pressure.

RADIOLOGICAL TECHNIQUES

Computerized tomography
There have been numerous attempts to develop ICP and mortality prediction models
based on CT findings such as loss of gray and white matter differentiation, midline
shift and basal cistern and ventricular effacement[79,142-143]. However, present evidence
suggests that CT is not a very sensitive tool in the sense that CT remains normal even
with a raised ICP [144].

Magnetic resonance imaging
The MRI-ICP method is a new method wherein advances in MRI technology are
combined with neurophysiological principles to predict ICP[145]. It basically measures
the pulsatile differences in intracranial volume and pressure to predict a mean ICP.

MRI has also been used to evaluate the optic nerve and measure the optic nerve
sheath diameter 3 mm posterior to the globe[146].  However, MRI based techniques
suffer from obvious lacunae in the form of offering only picture of ICP at a particular
time  frame.  Also,  MRI  based  techniques  require  the  patient  to  be  subjected  to
transport logistics and the convenience of bedside procedures is absent[147].

IS ICP MONITORING REALLY BENEFICIAL: WHAT IS THE
EVIDENCE?
Over the last few decades, ICP monitoring has become the standard of care, especially
in Europe and North America. However, the invasive methods are a health-resource
intensive modality necessitating the question to be asked – does ICP monitoring really
make  a  difference  in  outcomes  and  is  this  outcome  different  from  therapeutic
decisions based on clinical evaluation. The landmark BEST – ICP trial explored this
question and the implications of  this  trial  are  particularly  interesting[148,149].  This
multicentre trial in Bolivia and Ecuador compared two management strategies in
patients with severe TBI.  In one arm management decisions and treatment were
standardized based on invasive ICP monitoring while in the other arm treatment
strategies was based on serial CT and clinical features. The results showed that while
there was trend towards lesser mortality and better care in ICP monitoring group, in
terms of  outcome both modalities  achieved the same results.  While  it  remains a
landmark trial, the BEST – ICP trial has attracted a lot of critique, bringing to light
several limitations of the study[150-152].

It  is  important  to  note  that  the  trial  is  not  a  direct  measure  of  efficacy of  ICP
monito-ring. When looked at it closely, it was basically a trial of two management
strategies, the management strategy of ICP monitoring being a novel one. Further,
there  was  no set  limit  for  intracranial  hypertension in  ICP monitoring group to
institute therapy[148,149]. This trial has established the need for further research into the
topic.  Further  research would most  likely be comparative effectiveness  research
because the practical scope of conducting randomized controlled trials in the complex,
volatile and ever-changing settings of neuro-critical care is very limited[153,154]. It has
also been suggested that there could be more to what that meets the eye in secondary
brain injury, especially ongoing micro and macro vascular dysfunction in the face of
apparently normal ICP, CPP and cerebral blood flow[148,155-163].

An important implication to consider is the oversimplification to treat elevated ICP
as a number: 20 mm Hg earlier, and 22 mm Hg now, especially in TBI[16,164,165]. There is
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more and more evidence emerging which suggests that cerebral cellular dysfunction
and hypoxia at presumably normal ICP. This brings to fore the concept of multi-
modality management[155,166-170]. Along with ICP monitor, new-age monitors such as
cerebral microdialysis, brain tissue saturation, TCD, cerebral blood flow, EEG as well
as routine imaging based monitoring have been explored to monitor neurological
injury[171-174].  They are rapidly establishing themselves as a part  of  multimodality
management where in addition to understanding the pathophysiology of ongoing
neurological  injury and influencing therapeutic  decisions,  they also have shown
promise as independent markers of morbidity and mortality[175-180].

Hence,  while  ICP  monitoring  has  been  shown  to  have  beneficial  effects  in
neurologically injured patients, to get better outcomes, it would be wise to use it in
conjunction with other monitors of the brain.

CONCLUSION
ICP monitoring has established itself as a modality useful in predicting outcome and
guiding therapy across the whole spectrum of neurologically injured patients.  In
terms of accuracy, reliability and therapeutic options, the intraventricular catheter
systems  still  remain  the  gold  standard  modality.  However,  recent  advances  in
technology and software have meant that non-invasive techniques to monitor ICP
have become more  relevant.  There  is  still  a  considerable  way to  go  before  non-
invasive modalities of  ICP monitoring becomes more popular and a widespread
alternative to invasive techniques.
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