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Contrast-Enhanced MR Imaging of
Lymph Nodes in Cancer Patients

The accurate identification and characterization of lymph nodes by modern
imaging modalities has important therapeutic and prognostic significance for
patients with newly diagnosed cancers. The presence of nodal metastases limits
the therapeutic options, and it generally indicates a worse prognosis for the
patients with nodal metastases. Yet anatomic imaging (CT and MR imaging) is of
limited value for depicting small metastatic deposits in normal-sized nodes, and
nodal size is a poor criterion when there is no extracapsular extension or focal
nodal necrosis to rely on for diagnosing nodal metastases. Thus, there is a need
for functional methods that can be reliably used to identify small metastases.
Contrast-enhanced MR imaging of lymph nodes is a non-invasive method for the
analysis of the lymphatic system after the interstitial or intravenous administration
of contrast media. Moreover, some lymphotrophic contrast media have been
developed and used for detecting lymph node metastases, and this detection is
independent of the nodal size. This article will review the basic principles, the
imaging protocols, the interpretation and the accuracies of contrast-enhanced
MR imaging of lymph nodes in patients with malignancies, and we also focus on
the recent issues cited in the literature. In addition, we discuss the results of sev-
eral pre-clinical studies and animal studies that were conducted in our institution. 

he identification of metastases in lymph nodes has a major effect on the
prognosis and treatment of malignancies (1-5). Finding a single nodal
metastasis can reduce a patients’ prognosis by approximately one-half,

regardless of the location or size of the primary tumor (2, 5). Surgical staging with
lymphadenectomy and histopathologic evaluation of lymph nodes is considered the gold
standard for patients with various malignancies such as prostate cancer. This technique is
invasive, it is confined to the surgical field for nodal sampling (which may lead to
sampling errors) and the technique has only limited accuracy (6, 7). Thus, several
imaging modalities, including computed tomography (CT), magnetic resonance (MR)
imaging and nuclear medicine imaging, are used to help diagnose metastatic involvement
in lymph nodes (8). Yet anatomic imaging (CT and MR imaging) cannot depict small
metastatic deposits in normal-sized nodes. Further, the size of nodes is a poor criterion
when there is no extracapsular extension or focal nodal necrosis to rely on (9). Clinical
studies have shown that enlarged lymph nodes do not necessarily contain metastases and
many small nodes could be metastatic (4). Likewise, positron emission tomography
(PET) with fluorine 18 fluorodeoxyglucose (18F-FDG) may not depict small deposits that
are below the resolution of the scanner. In addition, 18F-FDG is not a very selective tracer
for tumor imaging since cell types other than tumor cells actively use glucose. The
macrophages in inflammatory and infectious lesions can demonstrate increased 18F-FDG
uptake, as well as the lymph nodes that are involved with granulomatous disease or
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silicosis (10, 11). Thus, there is a need for functional
methods that can be reliably used to identify small
metastases. 

There have been several recent studies that have
attempted to differentiate metastases from benign lymph
nodes using contrast-enhanced MR imaging of lymph
nodes (LNMRI) or MR lymphography, which is a potential
noninvasive method for analyzing the lymphatic system
after interstitial (intracutaneous or subcutaneous) or
intravenous administration of contrast media (12). Because
detecting metastases depends on the contrast between
benign and malignant structures, a contrast medium that
accumulates either in only healthy lymphatic tissue or in
only metastatic deposits may greatly increase the sensitiv-
ity and specificity of the diagnosis (13). Direct lymphatic
administration has limited clinical value because the
required technique is difficult and demanding, and it is also
highly invasive and has associated side effects (14).  

This article will review the basic principles, imaging
protocols and clinical significance of contrast-enhanced
LNMRI in patients with malignancies, while focusing on
the recent issues cited in the literature. In addition, we also
discuss the results of several pre-clinical studies and animal
studies that have been done at our institution. 

The Basic Principles of Contrast-Enhanced MRI of
Lymph Nodes

Interstitial administration of LNMRI contrast media (e.g.,
peritumoral) allows high accumulation of the contrast in
regional lymph nodes. After intra- or subcutaneous
injection, the compounds are taken up into the highly
permeable, thin-walled, fenestrated lymphatic capillaries
and they are transported with the lymph fluid to the lymph
nodes. The contrast media can either target specific lymph
nodal components (e.g., neoplastic cells) or be taken up by
the macrophages in the nodes (8). This method can also be
used for detecting sentinel lymph nodes, which are the first
lymph nodes in the drainage path from a tumor site and
these nodes are the location of early metastases.
Identification, dissection and immunohistochemical evalua-
tion of these sentinel nodes could be sufficient for tumor
N-staging (nodal metastases) (13). This mode of contrast
media administration seems to be the most feasible for
breast cancers, melanomas, head and neck cancers and
rectal cancers. Interstitial contrast-enhanced LNMRI can be
performed with several types of contrast media, including
extracellular contrast media, extracellular contrast media
encapsulated in liposomes, superparamagnetic iron oxide
particles, polymeric compounds and lipophilic compounds
that form aggregates or micelles (15-24). The potential
problems of the interstitial route of contrast media
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Table 1. Contrast Medias Reported in Literature for Contrast-Enhanced LNMRI

Generic Name
Trade Injection Lymph Node Compound Human 
Name Route Specificity Type Application

References

Gadolinium- Gadopentetate dimeglumine Magnevist Interstitial No Chelate Yes 29
based Gadoterate meglumine Dotarem Interstitial No Chelate Yes 30
contrast Gadodiamide Omniscan Interstitial No Chelate Yes 16
media Gadobutrol Gadovist Interstitial No Liposome Yes 17, 31

encapsulated
Gadopentetate dimeglumine-PE - Interstitial No Liposome No 32

encapsulated
Gadopentetate dimeglumine-PGM - Interstitial/intravenous Yes Polymer No 19, 33
PAMAM dendrimer based medium - Interstitial No Polymer No 34, 35
SHL643A Gadomer-17 Interstitial No Polymer No 36
NC22181, NC66386 - Interstitial No Polymer No 37
Gadomelitol Vistarem Interstitial No Polymer Yes 38
Gadofosveset trisodium Vasovist Interstitial No Albumin binding Yes 39
Gadofluorine 8 - Interstitial Yes Micelle No 21, 22
Gadofluorine M - Interstitial/intravenous Yes Micelle No 12, 40, 41

Iron oxide- Ferumoxide Feridex/Endorem Interstitial No SPIO Yes 23
based Ferumoxtran-10 Combidex/Sinerem Interstitial/ Yes USPIO Yes 24, 42 
contrast intravenous
media MION-46, 47 - Interstitial/intravenous Yes USPIO No 27, 43

Note. — LNMRI = MRI of lymph nodes, MION = monocrystalline iron oxide nanoparticle, PAMAM = polyamidoamine, PE = phosphatidylethanolamine, 
PGM = polyglucose associated macrocomplex, SPIO = superparamagnetic iron oxide, USPIO = ultrasmall superparamagnetic iron oxide



administration include evaluation of lymph nodes that are
distal to a lymphatic obstruction and that are not opacified,
and evaluation of lymph nodes on the contralateral side,
which would necessitate multiple injections (25, 26). 

Intravenous contrast-enhanced LNMRI offers a noninva-
sive means of potentially analyzing the lymphatic system
(12). Intravenous injection of a lymphotropic contrast
medium is preferable to interstitial administration because
the intravenously injected contrast medium is distributed
to each individual lymph node (12). Intravenously adminis-
tered contrast media for LNMRI tends to accumulate in the
organs belonging to the reticuloendothelial system. The
ideal LNMRI contrast medium would accumulate in all
lymph nodes after intravenous injection, making it useful
for lymph node staging for all types of cancer. In contrast
to an interstitial application, intravenous injection is
investigator independent and it may result in a more
reproducible imaging. In tumor-bearing lymph nodes, the
functional lymph node tissue and sinusoidal macrophages
are replaced by tumor cells (27). Contrast medium will be
taken up by the functional lymph node tissue, but not by
the tumor cells, resulting in high signal contrast between
the benign and malignant structures (13).

Although the exact mechanism for the transfer of
intravenously injected contrast media into the lymphatic
tissue is largely unknown, two main pathways are possible.
The first mechanism is a nonspecific capillary extravasation
through transendothelial channels into the interstitial space
and the subsequent uptake into primary lymphatic vessels,
followed by transport to the lymph nodes (28). This route
appears to be responsible for the delayed accumulation of
iron oxide particles and a dextran-conjugated gadopente-

tate dimeglumine-polyglucose associated macrocomplex
(PGM). The second pathway is direct transcapillary
passage through the interendothelial junctions into the
medullary sinuses within the lymph nodes (28). This is
probably the main mechanism for the rapid lymph node
uptake of gadofluorine M (Bayer Schering Pharma,
Germany), and it might also play a role in the uptake of
dextran-coated particles. 

Intravenous administration may have some drawbacks:
(i) the heterogeneous distribution between different groups
of lymph nodes in the body, (ii) the high requirements
regarding systemic tolerance of the contrast medium, (iii)
the requirement for a higher dose, (iv) it has no potential
to detect the sentinel lymph nodes and (v) there is no
visualization of lymphatic vessels. The intravenous
injection mode is preferable for lung cancers, colon
cancers, head and neck cancers, testicular carcinomas,
cervical and ovarian cancers and lymphomas (13).

Table 1 summarizes the contrast medias that have been
reported on in the literature for contrast-enhanced LNMRI
(12, 16, 17, 19, 21-24, 27, 29-43). 

Ultrasmall Superparamagnetic Iron Oxide (USPIO)-
Enhanced MRI of Lymph Nodes

Ferumoxtran-10 (Combidex [Advanced Magnetics,
Cambridge, MA]; also known as Sinerem, AMI-7227,
AMI-227 and BMS 180549) is a reticuloendothelial
system-targeted MR imaging contrast medium that consists
of USPIO particles, and this was specifically developed for
contrast-enhanced LNMRI and to improve the detection of
minimal nodal metastases (28, 44-47). Even though the
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Fig. 1. Uptake mechanism of ferumox-
tran-10. 
A. Intravenously injected particles slowly
extravasate from vascular space to
interstitial space.
B. Particles are then transported to
lymph nodes via lymphatic vessels. 
C. In lymph nodes, particles are internal-
ized by macrophages.
D. These intracellular iron-containing
particles cause normal nodal tissue to
have low signal intensity. Disturbances
of lymph flow or nodal architecture by
metastases lead to abnormal accumula-
tion patterns, as is depicted by lack of
decreased signal intensity.



cost of ferumoxtran-10 is higher than the other commer-
cially available MRI contrast medias, there have been
several promising reports for the detection of lymph node
metastasis by using ferumoxtran-10-enhanced LNMRI.
These USPIO nanoparticles are composed of an iron oxide
crystalline core of 4.3-6.0 nm covered by low-molecular-
weight dextran. The T1 and T2 relaxivities of these
nanoparticles in 0.5% agar are 2.3 × 104 and 5.3 × 104

mol-1 sec-1 (20 MHz, 39℃), respectively (48). 
After intravenous injection of the recommended dose of

2.6 mg of iron per kilogram of body weight, the ferumox-
tran-10 particles are transported into the interstitial space
and subsequently into the lymph nodes via the lymph
vessels (48). Once within the normally functioning nodes,
the iron particles are phagocytosed by the macrophages,
and this reduces the signal intensity of the normal lymph
nodes in which they accumulate due to the susceptibility
effects of iron oxide reducing T2*. Macrophage activity is
absent in the areas of lymph nodes that are replaced by
malignant cells, and so there is a lack of ferumoxtran-10
uptake (Fig. 1). Thus, post-ferumoxtran-10 MRI allows
identification of metastatic areas within the lymph nodes
and this is independent of the lymph node size (49). 

Ferumoxtran-10 is well-tolerated and it has a favorable
safety profile (50). However, ferumoxtran-10 is contraindi-
cated for patients with known hypersensitivity or anaphy-
lactic reaction to ferumoxtran-10 or any component of the
product. Thus, physicians should make an effort to prevent
such reactions. Due to the observed maternotoxic and
teratogenic effects of ferumoxtran-10 in animals, ferumox-
tran-10 is contraindicated in women of child-bearing
potential and who are not using effective contraception,

and during pregnancy and breastfeeding (51). Medical
supervision for 60 minutes from the start of the infusion is
required because of the potential for severe allergic,
anaphylactic or infusion-like reactions. Patients with a
history of hypersensitivity, including allergy to an
iodinated contrast medium, should be carefully monitored
as the risk of adverse reactions, and particularly allergic
reactions, is increased. The most common adverse event
reported in the studies that were evaluated in a metaanaly-
sis was mild lumbar back pain and this occurred in fewer
than 4% of patients (52). Other adverse effects were
headache, vasodilatation and urticaria. None of the
adverse events were serious, with most being mild or
moderate in severity and of a short duration.

Imaging Technique
It has been standard practice to perform lymphotropic

nanoparticle imaging with two MRI scans at about 24-36
hours apart (42, 53). This time lag before performing the
post-contrast imaging is essential to allow sufficient extrac-
tion of the ferumoxtran-10 by the normal functioning
macrophages within the nodes. If the imaging is performed
prematurely, then the lack of sufficient nodal uptake
within benign nodes may lead to their erroneous character-
ization as malignant nodes (49).

The precontrast imaging is primarily used for staging the
primary tumor. The T1-weighted gradient recalled echo
(GRE) and T2-weighted fast spin-echo sequences are used
for anatomic localization; the T1-weighted sequence in
particular is necessary for identification of a fatty hilum.
Such identification is critical for correct interpretation of
the postcontrast images. A T2*-weighted GRE sequence is
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Fig. 2. Patterns of ultrasmall superpara-
magnetic iron oxide (USPIO) uptake in
benign and malignant lymph nodes on
contrast-enhanced MRI of Lymph
nodes, and respective interpretations of
these patterns. 



then performed. Although USPIO shortens the T1 and T2*
relaxation times, it is the T2*-weighted sequence that is
most sensitive to the susceptibility changes induced by the
intranodal nanoparticles. In addition, the T2*-weighted
sequences are superior for nodal characterization on the
postcontrast images as compared to that of the fast spin-
echo T2-weighted sequences (54). Therefore, the imaging
parameters should be optimized to enhance the T2*
weighting while minimizing the T1 effects (54, 55). The
T2*-weighted sequence should ideally be a heavily T2*-
weighted GRE acquisition with a long echo time and a
small flip angle, since a short echo time may lead to an
inadequate signal drop (49). 

Some investigators have recently reported modified
imaging protocols to improve the accuracy of detecting
malignant lymph nodes and to save the scan time without
decreasing the diagnostic accuracy. Acquiring a dual echo
time (TE) T2*-weighted sequence with intermediate and
long TE values improves nodal characterization. Saksena
et al. (54) showed that images with a TE of 21 msec
showed higher specificity, but low sensitivity, whereas the
images with a TE of 12.2 msec showed higher sensitivity,
but lower specificity. This was attributed to the longer TE
detecting even small concentrations of ferumoxtran-10
within nodes, and so more true-negative nodes are identi-
fied. Saksena et al. (54) found that there is no significant

difference in the diagnostic precision between paired MRI
(unenhanced MRI followed by ferumoxtran-10 enhanced
MRI) and post-contrast MRI alone for an experienced
reviewer. The heavily T1-weighted images remain
unaffected by ferumoxtran-10. These images could also be
obtained after administration of ferumoxtran-10 and they
do not require a separate unenhanced imaging session. The
high-resolution LNMRI technique also showed promising
results of 100% accuracy to differentiate benign and
malignant lymph nodes; Kimura et al. (56) performed high
resolution ferumoxtran-10-enhanced LNMRI with a
section thickness of 3 mm, a 256 × 256 matrix and a small
field of view (10 × 10 - 16 × 16 cm) using a 3-inch
surface coil in breast cancer patients, and they evaluated
sentinel lymph nodes. However, this technique is limited to
evaluating distant lymph nodes. 

Clinical 3.0T whole-body MRI systems are becoming
increasingly available. Heesakkers et al. (57) reported that
ferumoxtran-10 enhanced MRI at 3.0T improved the
image quality as compared with 1.5T MRI, and the former
has the possibility of increased detection of small metasta-
tic lymph nodes. However, we found that 3.0T monocrys-
talline iron oxide nanoparticle (MION)-47 enhanced MRI
had a higher specificity as compared to that of 1.5T
imaging without a significant difference of sensitivity in a
rabbit VX2 model (58). It was mainly because of the T2*
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Fig. 3. Benign and metastatic lymph nodes on ultrasmall superparamagnetic iron oxide (MION [monocrystalline iron oxide nanoparticle]-
47)-enhanced MR imaging in three rabbit VX2 tumor models. 
A. T2*-weighted MR image obtained 24 hours after intravenous administration of MION-47 (2.6 mg of iron per kilogram of body weight)
shows homogeneous dark signal intensity of benign left paraaortic lymph node (arrow).
B. T2*-weighted MR image obtained 24 hours after intravenous administration of MION-47 (2.6 mg of iron per kilogram of body weight)
shows focal high signal intensity region (arrowhead) in right paraaortic lymph node (arrow), which was proven to be metastatic focus by
histopathology.
C. T2*-weighted MR image obtained 24 hours after intravenous administration of MION-47 (2.6 mg of iron per kilogram of body weight)
shows malignant right paraaortic lymph node (arrow), which was totally replaced with metastatic tissue.

A B C



susceptibility artifact that appears to shadow the small
metastasis in lymph nodes. 

Image Interpretation
On the pre-contrast T2*-weighted images, both the

benign and malignant nodes appear bright. After USPIO
administration, the benign nodes are typically black on the
T2*-weighted images and the malignant nodes remain
bright on the post-contrast T2*-weighted images.
However, there is a spectrum of appearances between
these two extremes (55). These patterns of USPIO uptake
and their interpretations are given in Figure 2 (53, 55),
which are based on the qualitative analysis of the readers. 

Lahaye et al. (59) reported that an estimated area of the
white region within the node that was larger than 30% was
highly predictive for discriminating between benign and
malignant lymph nodes, with a sensitivity of 93% and a
specificity of 96%. They measured the percentage of white
lesions (high signal intensity) within the lymph node. A high
signal intensity or white region in lymph nodes is caused by
no or very little uptake of USPIO in that part of the lymph
nodes. Our study shows that the larger the area of the white
region, the more likely that the node is malignant (Fig. 3). 

Some pitfalls in the interpretation of USPIO-enhanced
LNMRI have been reported. First, the normal fatty hilum
of a node can mimic a central metastatic deposit because it
shows bright signal intensity on both the pre- and post-
contrast T2*-weighted images. The T1-weighted sequence
will help reduce this misinterpretation by allowing correct
characterization of the fat within the nodal hilum (55).
Second, reactive hyperplasia of lymph nodes is known to
be one of the reasons for false positives. The lymphoid

follicles, which are located in the cortex, have few
macrophages and the lymphoid follicles appear as
relatively high signal intensity compared with the signal
intensity of the medulla (60). When lymph nodes undergo
reactive enlargement, there is frequently cortical or
paracortical hyperplasia, which results in an increase in the
size of the lymphoid follicles and the node’s cortical
thickness. Since the macrophages predominantly remain
within the medullary sinus, the susceptibility effects of
USPIO in a reactive lymph node can appear confined to
the center of the node, and this appearance gives rise to
the pattern of central low signal intensity (61). Third,
granulomatous disease can cause necrosis within lymph
nodes, resulting in areas within the lymph node that are
devoid of macrophages. This appearance may be indistin-
guishable from that of a metastatic node on the postcon-
trast T2*-weighted images (55). Nodal fibrosis can cause a
similar appearance, as was observed in a study by Saksena
et al. (54). Fourth, the relatively poor contrast between the
metastasis and the surrounding extralymphatic tissue on
the T2*-weighted images makes the detection of subcapsu-
lar metastases difficult, and it has also been suggested that
micrometastases in the germinal center may not be seen
due to the scarcity of macrophages in this area (40, 60, 62). 

Diagnostic Accuracy 
Despite these limitations, the reported accuracy of this

novel technique supersedes the conventional parameters
described earlier. Harisinghani et al. (42) reported a
sensitivity of 100% with a specificity of 96% for character-
izing lymph nodes in patients with prostate cancer. Of
note, 71% of the histopathologically proven malignant
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Table 2. Summary of Published Clinical Trials with Ultrasmall Superparamagnetic Iron Oxide

References
No. of Patients Region

USPIO-Enhanced MRI*

Authors No. Year Sensitivity (%) Specificity (%) Accuracy (%)

Anzai et al. 63 1994 011 Head and neck 95 84 -

Bellin et al. 64 1998 030 Pelvis retroperitoneum 100 80 -

Sigal et al. 65 2002 081 Head and neck 88 77 -

Stets et al. 66 2002 009 Breast 81 92 87
Mack et al. 67 2002 030 Head and neck 86 100 -

Anzai et al. 53 2003 147 All body regions 83 77 80
Harisinghani et al. 42 2003 080 Pelvis 91 96 -

Deserno et al. 68 2004 058 Pelvis 96 98 -

Rockall et al. 69 2005 044 Pelvis 91-100 87-94 -

Stadnik et al. 70 2006 010 Breast 100 80 -

Saksena et al. 54 2006 065 All body regions 87 96 -

Memarsadeghi et al. 71 2006 022 Breast 100 98 98
Lahaye et al. 59 2008 028 Pelvis 93 96 -

Heesakkers et al. 72 2008 375 Pelvis 82 93 -

Note. — * Data are based on node-by-node assessment. USPIO = ultrasmall superparamagnetic iron oxide
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Fig. 4. Coronal T1-weighted spin-echo MR image, T2*-weighted gradient-echo MR
images, CT image, PET image, integrated PET/CT image and photomicrograph of right
iliac lymph node of rabbit four weeks after VX2 tumor inoculation, and images were taken
with rabbit in prone position. 
A. T1-weighted spin echo image (400/12) obtained before injection of ultrasmall
superparamagnetic iron oxide shows right iliac lymph node (arrow) with low signal
intensity. 
B. T2*-weighted gradient-echo image (400/24, flip angle of 20�) obtained before injection
of ultrasmall superparamagnetic iron oxide shows right iliac lymph node (arrow) with high
signal intensity in upper portion and intermediate signal intensity in lower portion. 
C. T2*-weighted gradient-echo image (400/24, flip angle of 20�) obtained 24 hours after
injection of ultrasmall superparamagnetic iron oxide shows functional tissue of right iliac
lymph node with uniform low signal intensity in upper portion, and small amount of
malignant tissue (arrow) with high signal intensity in lower portion. 
D-F. PET and integrated PET/CT images show right iliac lymph node (arrows) without
increased fluorodeoxyglucose uptake. 
G. Photomicrograph of histopathologic specimen shows right iliac lymph node with 3.2
mm malignant tissue focus (arrows) (Hematoxylin & Eosin stain; ×5).



nodes did not fulfill the traditional imaging criteria for
malignancy. Anzai et al. (53), when reporting on an overall
phase III multicenter trial for evaluating various primary
cancers, reported a sensitivity, specificity and accuracy of
85%, 85% and 85%, respectively, with using the post-
contrast imaging alone and 83%, 77% and 80%, respec-
tively, with the paired pre- and post-contrast MRI. In a
recent meta-analysis, 19 prospective studies that compared
MRI, with or without ferumoxtran-10 enhancement, with
the histopathological diagnosis were used for data analysis
and extraction. The authors showed that ferumoxtran-10-
enhanced MRI has a higher diagnostic accuracy than
unenhanced MRI for diagnosing lymph node metastases.
The summary receiver operating characteristic (ROC)
curve analysis for the per-lymph-node data showed an
overall sensitivity of 88% and an overall specificity of
96% for ferumoxtran-10-enhanced MRI (52). A summary
of the various reported series on ferumoxtran-10-enhanced
MRI is shown in Table 2 (42, 53, 54, 59, 63-72).

Ultrasmall superparamagnetic iron oxide-enhanced MRI
and PET/CT are current known to be the most advanced
imaging tools to improve the accuracy of nodal staging in a
non-invasive manner. There has been no clinical data
concerning direct comparison of USPIO-enhanced MRI
versus PET/CT for the detection of lymph node metastasis.
Stadnik et al. (70) reported that USPIO-enhanced MR
imaging for the axillary lymph node staging in breast
cancer patients showed a sensitivity of 100% and a
specificity of 80%, while a sensitivity of 80% and a
specificity of 100% were achieved for 18F-FDG PET.
However, our experimental study using a rabbit VX2
carcinoma model showed MION-47-enhanced MRI had a
higher sensitivity (86%, 6 of 7) than PEC/CT (0%, 0 of 7)
for detecting small (< 5 mm) metastases (43) (Fig. 4). 

Gadolinium-Enhanced MRI of Lymph Nodes

Gadolinium-based compounds seem to have a potential
for the future clinical application of LNMRI. Gadolinium-
enhanced MR images exhibit higher spatial resolution, a
higher signal-to-noise ratio and fewer artifacts than do the
MR images enhanced with T2* media such as iron oxide
particles (19, 44). However, the major drawback of
gadolinium-based contrast media for LNMRI is that there
has been no clinically available lymphotrophic gadolinium
media. Thus, in this session of the paper, we reviewed a
few clinical trials that used interstitial contrast-enhanced
LNMRI with gadolinium chelates or blood pool media, and
other experimental studies for the future clinical applica-
tion of interstitial or intravenous contrast-enhanced
LNMRI with modified gadolinium media (Table 1).

Interstitial Contrast-Enhanced MRI of Lymph Nodes
Interstitial contrast-enhanced LNMRI with the commer-

cially available extracellular gadolinium chelates such as
gadopentetate dimeglumine, gadoterate meglumine and
gadodiamide have been performed in humans. Interstitial
contrast-enhanced LNMRI with gadopentetate dimeglu-
mine is a feasible modality for breast sentinel lymph node
mapping, and so it can be used for performing surgical
biopsy of the breast sentinel lymph node (29). Ruehm et al.
(30) evaluated the lymphatic system of the lower extremi-
ties on interstitial contrast-enhanced LNMRI with gadoter-
ate meglumine, which allowed visualization of the draining
lymph vessels and nodes; in one patient, an inguinal fluid
collection could be characterized as a lymphocele, and a
chylothorax was diagnosed in one infant. However, these
techniques are limited by their inability to differentiate
between benign and malignant lymph nodes in cancer
patients. 

Several modified gadolinium contrast medias have been
developed, and interstitial contrast-enhanced LNMRI with
using some of these contrast medias has been investigated
for the detection of malignant lymph nodes in tumor-
bearing animal models. The newly developed gadolinium
media can provide higher T1-relaxivity than that of the
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Fig. 5. Oblique coronal maximum intensity projection image from
T1-weighted 3D gradient-echo MRI sequence obtained 60
minutes after interstitial administration of 5 μmol/kg gadofluorine
M in VX2 tumor rabbit model. Metastases in right popliteal
(arrowhead) and iliac (thick arrow) lymph nodes are
demonstrated as filling defects. Lymphatic vessels (thin arrow)
are also sharply delineated. 



conventional extravascular contrast media; the materials
include liposome-encapsulated media (gadobutrol and
gadopentetate dimeglumine-PE), polymeric media
(gadopentetate dimeglumine-PGM, PAMAM dendrimer
based medium, SHL643A, NC22181, NC66386 and
gadomelitol), protein-binding compounds (gadofosveset
trisodium) or micelle-forming media (gadofluorine 8 and
M) (12, 21, 31, 32, 34-39, 41). These media enabled the
visualization of the lymphatic system and the detection of

lymph node metastases, which were demonstrated as filling
defects in the lymph nodes (Fig. 5). Among those medias,
gadobutrol, gadomelitol and gadofosveset trisodium can be
used for human application as a blood pool medium. 

Intravenous Contrast-Enhanced MRI of Lymph Nodes
The intravenous injection of conventional extracellular

contrast media (gadopentetate dimeglumine) could
improve the identification and characterization of the
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Fig. 6. Coronal T1-weighted spin-echo MR
images, T2*-weighted gradient-echo MR
images and photomicrograph of left parotid
lymph node of rabbit four weeks after VX2
tumor inoculation (Choi et al. [40], reprint
with permission from Radiology). 
A. T1-weighted spin echo image (400/12)
obtained before injection of gadofluorine M
shows left parotid lymph node (arrowheads)
with low signal intensity, and VX2 tumor
(curved arrow) with slightly high signal
intensity. 
B. T1-weighted spin-echo image (400/12)
obtained 30 minutes after injection of
gadofluorine M (0.05 mmol gadolinium per
kilogram body weight) shows strong
enhancement of functional tissue
(arrowheads) of left parotid lymph node and
malignant tissue (arrow) shows slight
enhancement. High contrast between
enhanced functional lymph node tissue and
only slightly enhanced malignant tissue

enables more obvious detection of metastasis than in (D). VX2 tumor (curved arrow) with peripheral rim enhancement is also noted. 
C. T2*-weighted gradient-echo image (400/24, flip angle of 20�) obtained before injection of MION-47 shows left parotid lymph node
(arrowheads) with high signal intensity, and VX2 tumor (curved arrow) with high signal intensity. 
D. T2*-weighted gradient-echo image (400/24, flip angle of 20�) obtained 24 hours after injection of MION-47 (2.6 mg of iron per kilogram
of body weight) shows functional tissue (arrowheads) of left parotid lymph node with uniform low signal intensity and peripheral malignant
tissue (arrow) with high signal intensity, which shows poor contrast between malignant tissue and surrounding parenchymal tissue. High
signal intense VX2 tumor (curved arrow) with peripheral low signal intensity is also noted. 
E. Photomicrograph of histopathologic specimen shows malignant tissue (arrows) with maximum diameter of 2 mm in subcapsular
portion of left parotid lymph node (Hematoxylin & Eosin stain; original magnification, ×5).
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lymph nodes (the enhancement characteristics and the size,
shape and contour). The enhancement pattern of malignant
lymph nodes is histologically-related to nodal necrosis. A
significantly longer time to peak, a lower peak enhance-
ment, a lower maximum slope and a lower washout slope
were found in tumor-involved lymph nodes as compared
with that of normal lymph nodes (73, 74). However, these
compounds have no specific accumulation in the nodes and
they do not clearly differentiate between functional and
metastatic lymph node tissue (75, 76). 

The first lymphotrophic gadolinium-based contrast was
gadopentetate dimeglumine-PGM, which was administered
intravenously and it showed accumulation in the physio-
logic lymphatic tissue in a rat model (33). A water-soluble,
macrocyclic, gadolinium-based T1-contrast medium
(gadofluorine M) was recently reported to accumulate in
functional lymph node tissue after intravenous injection
(12). The compound contains a perfluorinated side chain
that is responsible for the formation of micelles in aqueous
solutions and for hydrophobic protein interaction. MRI of
VX2 tumor-bearing rabbits revealed a rapid, dose-
dependent signal increase in the functional lymph node
tissue starting within 5 min post-injection and it reached a
maximum at 60-90 min. The contrast medium enabled
detecting lymph node metastases that were greater than 1
mm in an animal model. The effects are related to both the
blood pool effect of the contrast medium and to an
additional subsequent accumulation in the functional
lymph node tissue (12). In terms of contrast-enhanced
LNMRI, gadofluorine M has the following two benefits
compared with USPIO particles: 1) a complete pre- and
post-contrast MR imaging examination is performed in one
session and 2) the high contrast between malignant and
functional lymph node tissues facilitates the detection of
lymph node metastases. Interestingly, our experimental
study showed that gadofluorine M-enhanced MR imaging
has higher accuracy for depicting lymph node metastases
than does USPIO (MION-47)-enhanced MR imaging in a
rabbit VX tumor model (40) (Fig. 6). 

CONCLUSION 

Differentiation between malignant and benign lymph
nodes on oncologic imaging is of major interest when
determining the therapeutic plan. There is currently no
accepted ideal imaging modality or technique for diagnos-
ing lymph node metastases. Contrast-enhanced LNMRI
seems to be a promising noninvasive modality for evaluat-
ing lymph nodes in patients with malignancies. This
technique may allow functional and anatomic definition in
one investigation. However, the contrast-enhanced LNMRI

techniques with contrast media need to be evaluated for
their future clinical applications, as none of the above-
mentioned lymphotrophic contrast medias are currently
approved for use in humans for contrast-enhanced LNMRI.
Only ferumoxtran-10 has reached the stage of clinical trials
for this indication. Another drawback of contrast-enhanced
LNMRI is that it cannot detect micrometastases of less than
1 mm in lymph nodes (25). Further development of MR
imaging techniques such as increased field strength, better
coils and optimized sequences will improve detecting
micrometastases in the future.
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of the lymphatic system: distribution and contrast enhancement
of gadodiamide after intradermal injection. Lymphology
2006;39:156-163

17. Misselwitz B, Sachse A. Interstitial MR lymphography using Gd-
carrying liposomes. Acta Radiol Suppl 1997;412:51-55

18. Weissleder R, Elizondo G, Josephson L, Compton CC, Fretz CJ,
Stark DD, et al. Experimental lymph node metastases: enhanced
detection with MR lymphography. Radiology 1989;171:835-839

19. Harika L, Weissleder R, Poss K, Zimmer C, Papisov MI, Brady
TJ. MR lymphography with a lymphotropic T1-type MR contrast
agent: Gd-DTPA-PGM. Magn Reson Med 1995;33:88-92

20. Staatz G, Nolte-Ernsting CC, Bücker A, Misselwitz B,
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