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Abstract

The analysis of functional magnetic resonance imaging (fMRI) data involves multiple stages of data pre-processing before the activation
can be statistically detected. Spatial smoothing is a very common pre-processing step in the analysis of functional brain imaging data. This
study presents a broad perspective on the influence of spatial smoothing on fMRI group activation results. The data obtained from 20
volunteers during a visual oddball task were used for this study. Spatial smoothing using an isotropic gaussian filter kernel with full width at
half maximum (FWHM) sizes 2 to 30 mm with a step of 2 mm was applied in two levels — smoothing of fMRI data and/or smoothing of
single-subject contrast files prior to general linear model random-effects group analysis generating statistical parametric maps. Five regions of
interest were defined, and several parameters (coordinates of nearest local maxima, t value, corrected threshold, effect size, residual values,
etc.) were evaluated to examine the effects of spatial smoothing. The optimal filter size for group analysis is discussed according to various
criteria. For our experiment, the optimal FWHM is about 8 mm. We can conclude that for robust experiments and an adequate number of
subjects in the study, the optimal FWHM for single-subject inference is similar to that for group inference (about 8 mm, according to spatial
resolution). For less robust experiments and fewer subjects in the study, a higher FWHM would be optimal for group inference than for
single-subject inferences.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a
noninvasive imaging method, which is used for the
localization of active brain areas. The analysis of fMRI data
involves multiple stages of data pre-processing before the
activation can be statistically detected. These steps include
correction of movement (after an estimate of movement
parameters), spatial transformations into standard anatomical
space, various kinds of spatial and temporal filtering or signal
normalization, etc. Within each step, specific values must be
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chosen for each processing parameter. The ideal choice of the
parameters depends on the type of fMRI paradigm, on the
type of inference (single-subject, multi-subject), on the
spatial scale (resolution of images) required for inferences
and on the particular compromise between sensitivity and
specificity of the analysis. Spatial smoothing is a very
common pre-processing step in the analysis of functional
brain imaging data. Smoothing is most often implemented as
a convolution of the imaging data with a gaussian smoothing
kernel described by a parameter of full width at half
maximum (FWHM). This step is an important as well as a
controversial operation with both advantages and disadvan-
tages. Usually, some amount of smoothing is applied prior to
estimate of image registration parameters because it allows
better registration [1]. Smoothing of fMRI data prior to the
statistical analysis can increase the signal-to-noise ratio
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(SNR) and increase sensitivity to signals of specific shapes
and sizes depending on filter design [1–9]. Smoothing is also
useful in reducing resampling-related artifacts after image
registration [10]. Note also that there is a constraint on the
lower limit of smoothing that can be used because statistical
inference in statistical parametric maps (SPMs) generally
depends on the theory of gaussian fields and implicitly
assumes that the data are good lattice representations of a
smooth gaussian field [2,3,11,12]. This only holds when the
voxel size is appreciably smaller than the smoothness.
Worsley and Friston [2] suggest that the effective FWHM
should be at least twice the size of the voxel. Spatial
smoothing is also useful for suppressing the influence of
functional and anatomical variability within and across
individual subjects. Voxel-based methods for the analysis
of functional neuroimaging data rely on the assumption that,
after spatial transformation (realignment and normalization),
all voxels are not only in the same anatomical reference space
but that activations over subjects are expressed in the same
location. This assumption is not valid in most cases: this is the
reason for using smoothing. An undesirable side effect of
smoothing is a partial-voluming artifact along the edges of the
brain, where brain voxels become smoothed with no-brain
voxels [1]. This results in a dark rim, which might be
mistaken for hypoactivity. Maisog and Chmielowska [1]
introduced a method for correcting for this effect. Further
undesirable effects of smoothing are decreased effective
spatial resolution, blurring and/or shifting of activations and
merging of adjacent peaks of activation. Some recent studies
analyzed the influence of spatial smoothing on fMRI brain
activations results [6,7,13–15]. In these studies, most often,
the influence of smoothing on several subjects in a single-
subject (first-level) approach was presented. In contrast, the
influence of smoothing on group results was analyzed by
White et al. [7]. In most of the studies, gaussian kernels were
used for spatial smoothing. Various parameters were assessed
in the resulting activation maps: sensitivity and specificity;
comparison with high-resolution unsmoothed data; spatial
extent and merging of two distinct regions; and replicability
of fine scale motor localizations.

In an extension of previous studies, this study presents a
comprehensive view of the influence of spatial smoothing on
fMRI group activation results. Some new aspects were
studied. We recorded coordinates of local maxima in
predefined regions of interest and their shifts with spatial
smoothing; t value at local maxima; and other variables
describing the fMRI results. Dependences of these char-
acteristics and coordinates of local maxima on filter size
(parameter FWHM) were studied and compared to theore-
tical or previous similar results.
2. Theory

The following section reviews some theoretical results of
the effect of signal width, anatomical variability and filter
width on the detectability of the signal (for more details, see
Ref. [4]). In a typical fMRI study, data are measured from n
subjects. Spatial smoothing using a gaussian filter kernel is
applied to each image to obtain smoothness with an effective
FWHM of w in each dimension. Consider a simple model for
fMRI activation with volumetric data as presented in Ref.
[4]. Denote the three-dimensional (3D) gaussian function
with standard deviation σ by

UðrÞ ¼ ð2pr2Þ�3=2exp½�jjxjj2=ð2r2Þ�; ð1Þ

where w ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8loge2

p
is the FWHM and x is a vector of

coordinates. The convolution of two gaussians is still
gaussian with a resulting FWHM of w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ w2

2

p
,

where w1 and w2 are FWHMs of original gaussians. We
consider several assumptions for this model: there is just
one peak contained in the signal. The peak is modeled as
the gaussian function h(2πσS

2)3/2 Φ(σS) where h is the
signal height and ws ¼ rs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8loge2

p
is the signal FWHM.

Stationary white noise ε is used to model a noise
component added to the signal. Additional smoothing
(image reconstruction) has the effect of convolution of the
signal plus noise with a gaussian point spread function
Φ(σR) with FWHM of wR ¼ rR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8loge2

p
. Location of the

resulting signal in group data is affected by several sources
of intersubject variability: anatomical and functional
variability, and registration error. In our paper, we will
use the term intersubject variability for the total effect of
all three sources of variability. That variability perturbs the
location of activation of each subject about the common
(expected) location. These perturbations are modeled as a
3D gaussian random variable with standard deviation σA.
The resulting image, averaged over subjects (a large
number n of subjects), can be written as

img ¼ ½signal*inter‐subject variabilityþ
whitenoise�*reconstruction

¼ thð2pr2SÞ3=2UðrSÞ*UðrAÞ þ e=
ffiffiffi
n

p
b*UðrRÞ ð2Þ

where * denotes convolution. The maximum of SNR can
be obtained when the filter width matches the perturbed
signal width (matched filter theorem), that is when

rR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2S þ r2A:

q
ð3Þ

If we consider real data with several activation peaks with
various heights, widths and distances between neighboring
peaks, and we use various widths of smoothing kernel,
then there are four theoretically possible alternative
events according to changing selected filter width [16]:
annihilation — an activation blob disappears; merge — two
activation blobs merge into one; split — one activation blob
splits into two; and creation— a new activation blob appears.
The first two events often become arguments against the use
of smoothing. Merging of two activation blobs will occur if
the distance between peaks is less than twice the FWHM of
the smoothing kernel.
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Another theoretical issue is the impact of smoothing on
common thresholding techniques. It is known that using
massively univariate voxel-wise statistics requires correc-
tion for multiple testing. There are some common
techniques to control family-wise error (FWE) [17] and
some of them depend on spatial smoothness. SPM2 uses a
combination of Bonferroni correction and the random field
theory (RFT) to control FWE. The Bonferroni method is
based on correction of the P value according to the number
of multiple tests. For functional MRI studies, this
correction seems to be very strict. The RFT method
accounts for dependence in the data. Nichols and Hayasaka
[17] have demonstrated that for a large observed z value,
the corrected P value depends on the measure of search
region and the measure of roughness (the inverse of
smoothness). An increase in smoothness will cause a
decrease in the corrected P value and an increase in
significance. Since the roughness parameter is difficult to
interpret, Worsley proposed a reparametrization in terms of
the convolution of a white noise field into a random field
with smoothness that matches the data. See more details in
Refs. [4,17]. Worsley defined resel as a spatial resolution
element with dimensions FWHMx×FWHMy×FWHMz.
Subsequently, we can combine search volume and resel
size and instead we can use the search volume measured in
resels. The RFT results then depend only on this single
quantity, the resel volume. Note that RFT results are only
valid for data that are smooth enough to approximate
continuous random fields.
3. Methods

3.1. Subjects

Twenty healthy right-handed subjects participated in the
study (7 males and 13 females). The mean age was 23±
3.9 years (with a range from 20 to 34 years; median, 22).
The subjects were volunteers from the professional or
academic sector, with no history of neurological or
psychiatric disease. Informed consent was obtained from
all subjects after all of the procedures were fully explained,
and the study received the approval of the local ethics
committee. Czech was the first language of all subjects.
Handedness was determined according to subject preference
for writing and drawing, which was determined by subject
report and by direct observation.

3.2. Task

A visual oddball task was performed. In this task, a train
of equally spaced visual stimuli is presented to the subjects.
There are two types of stimuli: standard stimuli and target
stimuli. The standard events occur more frequently than the
targets. The subjects are instructed to count the target stimuli
in their head and report the total number at the end of the
experiment. In the present study, the standard visual
stimulus=frequent event (93.7% of trials) was an image
consisting of the string of white characters ‘OOOOO’ on a
dark background, while the target image (6.25% of trials)
was the string of white characters ‘XXXXX’ [18]. Visual
stimuli were delivered via data projector onto the projecting
screen and were seen by the subjects through a mirror that
was mounted on the MRI scanner's radiofrequency head
coil. A total of 1024 images were shown to the subjects (64
targets and 960 standards) in four experimental runs of 256.
The interstimulus interval was fixed at 1600 ms. The
duration of stimuli exposure was constant at 500 ms. During
the remaining time (∼1100 ms), the screen was dark. The
targets were distributed randomly among the four runs and
1024 trials, but it was ensured that there were at least eight
frequent events between every pair of target events.

3.3. Image acquisition

Imaging was performed on a 1.5-T Siemens Symph-
ony scanner equipped with the Numaris 4 System
(MRease). Functional images were acquired using a
gradient echo, echoplanar imaging sequence: TR (scan
repeat time)=1600 ms, time to echo (TE)=45 ms, field of
view (FOV)=250 mm, flip angle=90°, matrix size 64×64,
slice thickness=6 mm, 15 transversal slices per scan. Each
functional study consisted of a four runs, and each of the time
course series consisted of 256 scans (total 1024 scans per
subject). Following functional measurements, high-resolu-
tion anatomical T1-weighted images were acquired using a
3D sequence that served as a matrix for the functional
imaging (160 sagittal slices, resolution 256×256 resampled to
512×512, slice thickness=1.17 mm, TR=1700 ms, TE=3.96
ms, FOV=246 mm, flip angle=15°).

3.4. fMRI data analysis

The SPM2 program (Wellcome Department of Imaging
Neuroscience, London, UK) was used for processing the
data. The following pre-processing was applied to each
subject's fMRI data: realignment to correct for any motion
artifacts; normalization into the standard stereotactic space
(MNI); spatial smoothing using a gaussian filter kernel with
FWHM sizes 2 to 30 mm with a step of 2 mm, temporal
filtering with a high-pass filter of 136 s and correction for
serial correlations. The original imaging matrix generated
from the above acquisition parameters was resampled to
isotropic voxels with a size of 3 mm. For each subject and all
sizes of FWHM, statistical parametric maps were computed
to detect activation using a general linear model voxelwise
analysis. Vectors of onsets of experimental conditions
convolved with a kernel that approximates the hemodynamic
response curve were used as regressors modeling specific
effects of interest in the imaging data. A specific hypothesis
(targetNfrequent) was tested with a t value [SPM (t)] at each
voxel. Another objective of this study was to examine the
effect of spatial smoothing applied to subject “results”
(contrast files). Although the smoothing is a linear operator
and generation of contrast maps using ordinary least squares
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is a linear procedure, we were interested in verification of
their permutation within SPM2 with real data. The rationale
is that SPM2 uses restricted maximum likelihood estimation
with autocorrelation estimates, which is not commutable
with the smoothing operator. Thus, the secondary smoothing
was applied to the contrast files entering into the group
analysis. Subsequently, group results were analyzed using
random-effect analysis (one-sample t test) for all of the
combinations of primary (first-level) and secondary (second-
level) smoothing.

3.5. Obtaining the characteristics of smoothed data

Five regions of interest (ROIs) were defined at the
commonly observed locations [18–20] of the most sig-
nificant activations during this kind of fMRI task (see
Table 1). An FWHM of 6 mm was used as the initial value
for the group analysis to generate coordinates of local
maxima in these ROIs; a filter size of 6 mm was chosen as it
is the typical value used in single-subject studies. Because of
the large amount of group results (generated through
combinations of primary and secondary smoothing), custom
Matlab scripts were written to extract the required character-
istics of interest. For each ROI, we were interested in the
coordinates of the nearest local maxima; t value, contrast
values (differences between target and frequent stimuli) and
residual mean square values at these coordinates; and mean
t value calculated from a spherical region centered on these
coordinates (radius of 7.5 mm). For each group result, we
were interested in the FWE corrected threshold, the false
discovery rate (FDR) corrected threshold (both using a
probability level of .05), the resel size, the resel count (the
number of resels in the brain mask) and the voxel count (the
number of voxels in the brain mask). The dynamic range of
significant t statistic values was assessed by subtracting the
FWE threshold from the t statistics at local maxima.

To study the possible resulting shifts of local maxima,
absolute and relative euclidian distances between initial and
actual coordinates of each local maximum were calculated.
Absolute distances were always calculated to initial
coordinates (both distances to coordinates of local maxima
in unsmoothed data and distances to the initially selected
coordinates from Table 1 within each ROI were calculated)
while relative differences were calculated to the coordinates
of local maxima obtained for the nearest lower smoothing.
Table 1
Description of ROIs

ROI Initial MNI
coordinates
(x, y, z)

MNI coordinates of nearest
local maxima for
unsmoothed data

Intersubject variability
(standard deviation/
FWHM)

IPS 48, −42, 48 45, −42, 48 3.03/7.14
ACC 9, 15, 39 6, 21, 36 3.15/7.40
SMA 3, 9, 54 0, 9, 54 2.57/6.05
IPL 57, −45, 21 57, −45, 18 2.98/7.00
ThR 15, −3, 15 15, 0, 15 2.27/5.34
The latter can be useful to find the filter widths generating
significant shifts of peaks. Differences between maximum
or mean statistics and FWE or FDR thresholds were
calculated as well to examine their dependence on spatial
smoothing. To separate the effect of intersubject variability
from the effect of spatial smoothing, we calculated the
measure of intersubject variability for each ROI. The
distances between group coordinates of local maxima in
specific ROI and single-subject coordinates of local maxima
from unsmoothed data were calculated. Then, the inter-
subject variability was assessed as the standard deviation of
these distances.
4. Results

4.1. Inspection of statistical parametric maps

We used maximum intensity projection (MIP) for a
preliminary evaluation of thresholded statistical parametric
maps (Fig. 1). If we used unsmoothed data, then there were
no clearly distinct activation centers. When a typical or larger
FWHM (N6 mm) was used to smooth the data, several
distinct activation centers appeared. The t statistics were also
more robust and the MIP images were less transparent. It was
difficult to observe significant shifts of activation peaks.
Moreover, differentiating between impact of first-level and
second-level smoothing is difficult from MIP pictures. From
this kind of inspection, it seems that the results are dependent
only on the overall amount of smoothing.

4.2. Influence of spatial smoothing on t statistics

The graphs of the influence of spatial smoothing on
t statistics at local maxima are illustrated in Fig. 2. Fig. 2A
and C shows the influence of first-level smoothing (applied
to MR data) on t values at local maxima and on mean
t values from sphere region centered at the coordinates of
local maxima, respectively. Fig. 2B and D shows the
influence of second-level smoothing (applied to contrast
files of single-subject results prior to group analysis) on
t values and on mean t values, respectively. In Fig. 2A and
B, there are distinct peaks for intraparietal sulcus (IPS),
anterior cingulate cortex (ACC) and supplementary motor
area (SMA) with FWHM sizes of 8 to 10 mm, whereas for
inferior parietal lobule (IPL) and thalamus R (ThR), the
first distinct peaks appear with FWHM of 8 and 6 mm,
respectively, and additional peaks appear with FWHM of
16, 22 and 24 mm. We can see converging of plotted
t values for large filter sizes, but it does not necessarily
mean merging of peaks in activation maps. To resolve this
problem, we have to compare the coordinates of ROIs.
There are no important differences between first-level and
second-level smoothing. The graphs of mean t statistics
around local maxima are smoother, and instead of peaks
there are plateaus. Fig. 2E shows the dependency of
t statistics on a combination of first-level and second-level
smoothing while the FWHM for second-level smoothing is



Fig. 1. Influence of spatial smoothing on MIPs of activation maps using a significance threshold of Pb.05 corrected for multiple comparisons controlling FWE.
(A) Only first-level smoothing (smoothing raw data) was used. (B) Combination of first-level and second-level (smoothing of contrast files entering into the
second-level analysis) smoothing was used.
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constant with a size of 30 mm. The last part of Fig. 2F
shows the impact of spatial smoothing on the dynamic
range of significant t statistic values. No significant
difference against Fig. 2A was observed.

4.3. Influence of spatial smoothing on statistical thresholds
and effective resolution of the data

Each graph of the FWE threshold as a function of FWHM
(Fig. 3A and C) can be described as consisting of two
sections. For the smaller FWHM, the statistical threshold is
constant. For larger filter widths, the graph resembles an
exponential decay. The reason for that is the combination
within SPM2 of two methods for the calculation of FWE
corrected threshold (Bonferroni correction and the RFT). For
more details, see the Discussion section.

FDR corrected thresholds as a function of spatial
smoothing are plotted in Fig. 3B and D. We can also see a
small decrease in threshold with increased smoothing, which
is not quite what was expected. In principle, the FDR method
is not dependent on the spatial smoothness of the data. Thus,
the reason for that is probably a change in calculating
P values with various amounts of smoothing applied to
the data.

As expected, we can observe the influence of spatial
smoothing on effective resolution of the data (Fig. 4). There
are slight differences between resel size for first-level
smoothing and resel size for the same amount of second-
level smoothing. A very interesting result is shown in
Fig. 4E. We can see differences between voxel count
(number of voxels) for first-level and second-level smooth-
ing. The mechanism of this will be discussed in the
Discussion section.

4.4. Influence of spatial smoothing on localization of
local maxima

The effect of spatial smoothing on the localization of
activation peaks is shown in Fig. 5. There are two types of
graph. Panels 5A and B show euclidian distances between
coordinates of local maxima and initial (reference) coordi-
nates for each ROI (see Table 1). Thus, the zero or minimum



Fig. 2. Effect of smoothing on the t statistics. (A and B) The t values in the nearest local maximum. (A) Only first-level smoothing was applied. (B) Only second-
level smoothing (smoothing of contrast files prior to second-level analysis) was applied. (C and D) Average t statistics around local maximum. (C) First-level
smoothing only. (D) Second-level smoothing only. (E) Combination of first-level and second-level smoothing (the second-level FWHM is always 30 mm). The t
statistics from local maximum are plotted. (F) Influence of first-level smoothing on the difference between t statistics in local maximum and FWE corrected
threshold. It can be calculated as subtraction of values in Fig. 3A (FWE threshold) from values in A (t statistics in local maximum).
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euclidian distances correspond to an FWHM of 6 mm. A
different approach was chosen for Panels 5C and D, where
the initial point is the same as the local maxima for
unsmoothed data. The local maximum is very stable in the
whole range of filter sizes for SMA, and it is relatively stable
(shift up to 5 mm) up to an FWHM of 14 mm for a majority



Fig. 3. Impact of spatial smoothing on whole-brain estimated statistical thresholds calculated by SPM2. (A and B) Only first-level smoothing was applied. (C and
D) Only second-level smoothing was applied. (E and F) Combinations of first-level and second-level smoothing (the second-level FWHM is always 30 mm).
(A, C and E) FWE threshold. (B, D and F) FDR threshold.
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of ROIs except ACC where the shifts are up to 10 mm. The
relative differences (Fig. 5F) show where (at which filter
size) the distances change the most. We can see that for the
majority of ROIs (except ACC), the significant shifts occur
for an FWHM above 14 mm.

For that large smoothing, one of the causes is often the
merging of neighboring activation peaks. During first-level
smoothing, merging of our ROIs occurs at an FWHM of 26
mm (merging of IPS and IPL as well as merging of ACC and
SMA). During second-level smoothing, merging occurs at an
FWHM of 22 mm (the same pairs of ROIs). The euclidian
distance between IPS and IPL is about 32 mm for
unsmoothed data and about 29 mm for initial coordinates
of ROIs (data smoothed with an FWHM of 6 mm). The
distance between ACC and SMA is about 22 mm
(unsmoothed data) and 17 mm (6 mm smoothing).

4.5. Influence of spatial smoothing on effect size
(contrast values) and residual values

We consider the contrast between the effects of frequent
and target stimuli as effect size. Fig. 6 shows that the effect
size decreases almost linearly but residual values decrease



Fig. 4. Influence of spatial smoothing on the smoothness of fMRI results. Effects of smoothing on resel size, resel count and voxel count are plotted in graphs. (A,
B and E) Either first-level or second-level smoothing was applied (see legend in graphs). (C, D and F) Combinations of first-level and second-level smoothing
(the second-level FWHM is always 30 mm). (A and C) Influence of smoothing on resel size. (B and D) Influence of smoothing on number of resels. (E and F)
Influence of smoothing on the number of voxels in the brain mask.
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quickly with an approximately exponential decay. This
explains the behavior of the t values seen in Fig. 2. We can
say that the initial increase in t statistics is due to a rapid
decrease in residual values with spatial smoothing. Note that
the large values of effect size are due to linear combination of
four sessions.

4.6. Comparison of intersubject variability with effect of
spatial smoothing

For each ROI the intersubject variability was calculated
from unsmoothed data using standard deviation of distances
between group and single-subject local maxima. These
standard deviations of intersubject variability were also
converted to FWHM. The results are summarized for each
ROI in Table 1.

Because the real data may violate theoretical assumptions,
we provide three additional graphs of contrast and statistical
values plotted along axes x, y and z presented in Fig. 7.
These extractions of 3D data show the shape of the activation
peak (“line profile”) in the IPL region (initial coordinates are
marked with dotted lines). We can see that the shape of peak
is not gaussian, it is not very symmetrical and isotropic and



Fig. 5. Influence of smoothing on euclidian distances between the nearest local maximum of t statistics and its initial coordinates within each ROI. (A, C and F)
First-level smoothing only. (B and D) Second-level smoothing only. (E) Combinations of first-level and second-level smoothing (the second-level FWHM is
always 30 mm). (A, B and E) Coordinates from Table 1 (typical coordinates for selected ROIs) were selected as initial coordinates for calculating distances. (C, D
and F) Corresponding distances when initial coordinates of each local maximum are derived from rough (unsmoothed) data. In part (F), relative differences are
plotted (subtraction of euclidian distance for actual FWHM and for nearest lower FWHM). This graph highlights filter sizes introducing the largest spatial shift of
each local maximum.
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there is another smaller peak near the primary one. Thus,
both the calculation of intersubject variability and the
possible assessment of peak size (e.g., using FWHM) are
not very accurate to deal with in the theoretical model. We
have to use these characteristics only as an approximation.
5. Discussion

In this article, we present an empirical study of the
influence of spatial smoothing on group SPM results. We
considered several issues. The primary issue is to find the



Fig. 6. Influence of smoothing on the residual mean square values (Graphs A, C and E) and the effect size (contrast values) (B, D and F). (A and B) Only first-
level smoothing was applied. (C and D) Only second-level smoothing was applied. (E and F) Combinations of first-level and second-level smoothing (the
second-level FWHM is always 30 mm). Graphs C and D show average characteristics around local maximum of t statistics. The others show characteristics from
local maximum of t statistics. Note that the effect size is obtained from linear contrast summed across four experimental sessions.
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rules for a rational choice of the optimal amount of spatial
smoothing. The specific values we derived can be applied
to similar fMRI tasks, but the more general rules can be
used for a wide range of fMRI experiments. We also
addressed the influence of spatial smoothing on various
parameters or characteristics of the resulting statistical
parametric maps and compared empirical data to known
theory. Hence, many parameters and their dependence on
spatial smoothing were studied and compared to theoretical
or previous similar results.

Inspection of activation maps in MIP yields only basic
general impressions. As the filter width increases, the spatial



Fig. 7. Graphs of contrast (effect size) and statistical values plotted along
axes x, y and z. These profiles extracted from the unsmoothed 3D data
show the real shape of the activation peak in the right IPL region (MNI
coordinates 57, −45, 21). These coordinates are marked with dotted lines
The t statistics is plotted with solid line and the effect size is plotted with
dashed line. Note that the effect size is obtained from linear contras
summed across four sessions.
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.

t

extent of the activations becomes larger and the statistics
become more robust. But one cannot exactly judge whether
there are any significant spatial shifts of activation centers.
Also, the degree of significance of the noticeable changes is
uncertain as long as we do not know the “true” underlying
functional/anatomical representations.

We consider the influence of spatial smoothing on t
statistics to be one of the most important characteristics
investigated in this study. One possible optimization goal is
to maximize sensitivity. To this end, we can search for
maximum t values (or any other statistics used for activation
detection) within predefined regions of interest. Such a
method has been used in previous studies [6,13] but only at
the first level of inference (single subjects). At the second
level of inference, we must consider intersubject variability
[4,7,21,22] in addition to single-subject results. The inter-
subject variability can be divided to anatomical and
functional variability, and registration error. From the
group-results point of view, these sources cause the same
localization error among subjects and can be considered as
an overall effect of intersubject variability. Higher sensitivity
is then anticipated at larger filter sizes. White et al. [7] used a
Hanning filter with an FWHM of 0 to 18 mm to study the
effects of spatial smoothing on group fMRI data analysis.
They suggest that an FWHM of 8 to 10 mm is appropriate to
suppress the intersubject variability in the sensorimotor
cortex but that a smaller filter size (an FWHM of about
4 mm) is more suitable in the thalamic and cerebellar areas.
This result is quite consistent with our present data (we found
maximal sensitivity in the thalamus with an FWHM of 6 mm
and in other ROIs with an FWHM of 8–10 mm). In a
preliminary study [23] with a different task and less robust
data (only 71 scans per person, 20 subjects in the study,
epoch design), the optimal FWHM for group inference was
about 12 mm.

For the purpose of finding maximum sensitivity, we can
interpret these results in two ways. First, considering there is
no intersubject variability (as at the single-subject level of
inference), we can conclude that we found the smoothing
filter width that matches the true spatial extent of activation.
Second, considering that the spatial extent of activation
peaks is substantially smaller than intersubject variability, we
can say that we found the best filter size to suppress
intersubject variability. In real data, differentiation between
these two effects is difficult, and it is maybe not necessary to
separate them. We tried to calculate intersubject variability
for each ROI. In all ROIs, the FWHMs of intersubject
variability are smaller than FWHMs that were detected
empirically as the filter size for the best sensitivity. This is
expected, but if we consider an ROI size of the order of
several millimeters, then slightly higher differences between
intersubject variability measure and the most sensible filter
size are expected [see Eq. (3)]. These can be due to violated
assumptions that are necessary to support the theoretical
model framework. Nonetheless, we can conclude that
intersubject variability is suppressed at filter sizes smaller
than those associated with maximal sensitivity. Filter size
then depends on sample size (number of subjects in the
study) and the robustness and the reproducibility of results
for single subjects. Our experimental results seem to be quite
robust and stable.

To control false positives, a correction for multiple testing
is commonly used. It is important that the correlations of
adjacent voxels in statistical processes are taken into account
when solving the multiple comparison problem [24]. There
are two main concepts: FWE and FDR, of which FWE can
be realized in several ways. FWE implemented in SPM2
software uses two alternative approaches: the Bonferroni
correction and the RFT [17], and the smaller of the two
results is then used as the corrected threshold. The
Bonferroni correction uses the number of voxels in the
brain as the number of independent tests, whereas the RFT
uses the resel volume (count of independent elements in the
image data) and hence the RFT corrected threshold is
dependent on the smoothness of the data. For example, in
Ref. [25], the smoothness of statistical maps generated from
unsmoothed, null-hypothesis data was estimated to be less
than a single voxel (FWHM≈0.90 pixels). For this reason,
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we assessed the influence of spatial smoothing on FWE and
FDR thresholds, on resel size and on the number of resels
(which represents the effective resolution or smoothness of
the data). Our results are consistent with simulations
presented in Ref. [17]. In addition to that, we used these
observed dependencies for comparison of the dynamic range
of t statistic values (subtraction of the thresholds from the
maximum or mean t values) with the behavior of the
maximum or mean t values. Those results are not reported in
full as they are very similar (overall shape and position of
peaks) to the graphs presented in Fig. 2. If the smoothed data
are thresholded using the corrected thresholds, then one can
argue that the main reason for achieving robust statistics is a
decrease in the corrected threshold; however, this is only a
minor (albeit still important) effect. The major effect
originates from the changes in effect size and residual
values. Note that although FDR correction is supposed to be
independent of the voxel count and spatial smoothness of the
data, it is possible to see a gradual decrease in FDR threshold
with increasing smoothing. This is probably due to a change
in the calculation of P values with various amounts of
smoothing applied to the data. Here, it is necessary to discuss
differences between observed numbers of (brain) voxels for
first-level and second-level smoothing. The volume of the
brain is constant, but the differences are caused by creating a
brain mask. During this process, the mask is created
according to the histogram of measured data to separate
brain tissue from its surroundings. This is useful to decrease
the number of statistical tests. But the brain mask is only
generated after first-level smoothing (prior statistics), hence
averaging of edge-of-brain voxels with out-of-brain voxels
increases the total number of brain voxels with an increasing
amount of spatial smoothing. For that reason, the mask
created prior to first-level statistics was used after second-
level smoothing due to suppression of more blurring
activations outside the brain. Thus, second-level smoothing
did not affect the number of voxels.

The influence of spatial smoothing on effect size and
residual values was also studied. Variability across subjects
decreases more rapidly than the mean effect over the subjects
in the FWHM range from 2 to 8 mm. This is the reason for
the noted increase of t values. Only a small decrease of
residual values can be observed in the FWHM range from 8
to 30 mm. This is the reason (note that the effect size still
decreases) for the appearance of peaks in the plots of
maximum t statistics. The dependence of effect size on
FWHM is more linear and decreases for all filter sizes. From
this point of view, it seems that the FWHM of about 8 mm is
optimal for suppressing intersubject variability. Knowledge
of graphs of mean effect size and residual mean square
values could be useful in deciding whether the final extent of
activation is due to low intersubject variability and large
activated areas at the single-subject level or due to high
intersubject variability and the small extent of activation
spread across single subjects. Worsley et al. [4] presented
simulations to show the effects of intersubject variability and
spatial smoothing on the signal-to-noise ratio. They demon-
strated that if the anatomical variability equals the signal
width, then the signal-to-noise ratio drops by 0.41, which is
equivalent to losing 65% of subjects.

Geissler et al. [15] presented a study of replicability of the
motor hand center with nonsmoothed and smoothed data
analysis. After they used smoothed data, they observed an
increase in motor center aberrations (spatial shifts) between
repeated measurements of about 100%. In our study, spatial
locations of activation centers were observed as well, but a
different approach was chosen. Coordinates of the nearest
(from the initial coordinates) local maximum within each
ROI were recorded. Subsequently, two different types of
reference coordinates were defined: initial coordinates for
each ROI and coordinates obtained at the nearest local
maxima when unsmoothed data were analyzed (see Table 1).
Both approaches are presented in Fig. 5. Our results are
useful for answering questions such as, “What is the
maximum filter size that can be used without having the
shift of activation center reach a certain critical distance?” or
“What is the filter size that leads to the maximum/minimum
distance of the activation center from its reference
coordinates?” High variability was found across our
predefined ROIs. We have to note that all meaningful filter
sizes cause shifts of local maxima. Therefore, we should
not use smoothing or use very low FWHM for applications
that need accurate localization. On the other hand, if we
tolerate spatial shifts of several millimeters (e.g., up to 5 or
6 mm), we can use spatial smoothing with an FWHM up to
12 mm. This value is only valid for similar experiments and
numbers of subjects, but we can conclude that similar
spatial smoothing will produce an acceptable amount of
spatial shifts for almost all studies that are designed with
respect to detection power and sample size appropriate for
group inference.

One typical negative effect was observed in our results—
the merging of ROIs. With first-level smoothing, merging of
IPS and IPL at an FWHM of 26 mm as well as merging of
ACC and SMA was noted. With second-level smoothing,
merging of the same pairs of ROIs was noted at an FWHM of
22 mm. Hence, such a filter size may be inappropriate for
nearby activations, but it is beyond the sensible filter size.
The other possible events (annihilation, split and creation of
peaks) were not observed in results from our ROIs. One
possible explanation is the choice of ROIs or robustness and
power of such an experimental design.

There are no considerable differences between first-level
and second-level smoothing. This suggests that the mechan-
ism used by SPM2, restricted maximum likelihood estima-
tion with autocorrelation estimates, although in principle
noncommutable, does not cause significant divergence of
results processed either way. This appears to be useful for
methodological practice. The suggestion that it is not
necessary to re-process all subjects at first-level analysis
may be particularly useful. We must note that the classical
approach of spatial smoothing with a fixed isotropic filter
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kernel is still commonly used (probably in most fMRI
studies), but several concepts were published more recently
in an attempt to improve spatial smoothing. One concept
(presented originally for functional PET studies) is called
“searching scale space” [4]. The authors proposed a search
over a range of filter widths to find four-dimensional local
maxima in location and scale space. This has the added
advantage of estimating the signal width as well as its
location. However, we think this concept is more effective
for increasing SNR (matching the activation width) than for
suppressing intersubject variability. A similar concept is a
computer vision tool referred to as the scale-space primal
sketch [16]. A rather different approach was presented as
“Anatomically Informed Basis Functions” [26] for single-
subject studies and for multisubject studies [22]. They used
various forms of prior anatomical knowledge (based on
reconstructed gray matter surfaces) and assumptions about
the location and spatial smoothness of the blood oxygenation
level-dependent signal to specify sophisticated spatiotem-
poral models for an fMRI time series. An approach that
should remove the effect of nonlinearity of spatial smoothing
on voxel variances (e.g., smoothing over different types of
tissue) called masked contrast images [27] was introduced
as a complement for standard methods of statistical
mapping. Friman et al. [8] introduced novel and funda-
mental improvements to fMRI data analysis called
“Adaptive Analysis of fMRI Data”. These improvements
included adaptive spatial filtering based on the concept of
spatial basis filters. The above-mentioned articles provide
important improvements to spatial smoothing. However,
the classical approach (fixed isotropic filter size) is still
used and implemented in most of the software for fMRI
data analysis. It is for this reason that we tried to extend
current knowledge about the effects of spatial smoothing on
fMRI group analysis.
6. Conclusion

The optimal filter size for the group analysis of functional
MRI depends on various criteria and specific functional areas
and experimental tasks. From the sensitivity point of view,
the optimal FWHM is 8–10 mm. These results are consistent
with other studies. From the smoothness-dependent thresh-
old point of view, it seems to be theoretically advantageous
to use a higher FWHM, but the advantages are not practically
significant if a thresholding procedure is implemented
similar as in SPM2. To use RFT, it is only necessary to
apply minimal smoothing (twice the voxel size). From the
intersubject variability point of view, the optimal FWHM
seems to be about 6–8 mm. From the spatial shift point of
view, acceptable FWHM can be about 12 mm if we tolerate
spatial shifts of up to 6 mm; otherwise, we should not use
smoothing if we do not tolerate any spatial shift of activation
peaks. This article evaluated many parameters and their
dependence on spatial smoothing and attempts to contribute
to a better understanding of the effects of spatial smoothing
on group analysis. We must note that exact values of optimal
FWHM are valid only for our experiment and similar
experiments, but we suggest a more general conclusion as
follows: for robust experiments with a large enough sample
size (number of subject above 16), the optimal FWHM is
similar for both single-subject inference and for group
inference and it is about 8 mm (according to the spatial
resolution of the data). For less robust experiments with a
smaller sample size, the optimal FWHM will be higher for
group inference than for single-subject inference and it will
probably be about 10–14 mm according to intersubject
variability, robustness of the data and spatial resolution.
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