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MAthewatmical Analysis of RnUdom Noise

By S. M. RICE

l•NTRODUR!C'lON

T IlS paper deals with the irtatlieinatical analysis of noise obtained by
passing random noise through physical devices. The random noise

considered is that which arises from shot effc:t in vacuum titids or from

thermal agitation of electrons ill resistors. (hOr main interest is in tile sta--

tistical properties of such noise and we leave to One side llarty l tlysical
results of which Nyquist's law may be given as an examle.I

About half of the work given here is believed to be new, the bulk of the
new results apeWaring in Parts, III and IV. In order to provide a suitalble
introdluction to these results and also to bring out their relation to the work
of Others, this paper is written as an exposition of the subject indh atc in
the title.

When a broad iasind (if random noise is applied to sonic diysical device,
such is an ekcrical network, the statistical properties of the output are

often of interest. IFor example, when the noise is duc toi shot effect, its

lelt'anl :tnl Staindatrd deviations arc given by (aml)lell's ttleorcrI (Part I)
when tle physical device is linear. Addilional information of this sort
is given by the (auto) correlation function which is a rough measure of lhe
dClpelile-ce of values of the ,litlut svjaratcd toy a fixed time interval.

''he paper consists of four main parts. The first part is concerned with
shot eff(t. LThe shot effcnt is important not only in its own right but
also 1ccause it is a typical source of noise. '11 lFourier series reltresetni Ia-

tion of a noise current, wlitili is used extensively in the fillowing parts, may
he ( l-tained from the rela tively simp le conccpts inherent in the shot effect.

"The sect-otl ptrt is devo tlel p rincipmlly to the fundamental resutIlt that the
power spectrum of a noise (iurrent is fle Fourier transform of its correlition
fultwion. 'This result is used again and again in Parts III and 11'.

A rather thilyrough ilist t,•Sýif of the statistit-s of rainItihm toi.s ( urreilts
is gi• en in Part Ill. 1'rnlb illy (list - ilt iohus vssok i;ttic WitI tilh e maxima
Of the current atul lhe maxima of its entveloi ' are (Icx'elopl•l. lor mu las

for thle exjac ted nitmler of zeros asm tind xima l:er 5•e•omvI art' given, and a
sýi t is m.ad! towards ,)l itpil:Ig the pro!':1Žat tvI li,.stsi!IutiOu( of t!:c .er',s.

When a noise voltage or a noise voltage plus a signal is applied to a nmn-

All accoI tilt of 0t1s .. ad , gi; v• t 1hy E. B. .auaiiia', S:poflancous Fhctuation:; of
Vultage," Oxford (1938).



linear devic-e, sucth as a square-law or linear rectifier, the outpmt will also
contain 1(oi.c. 11wh methods which are available for contputing the amount
of noise and its Sjewt'ral (listiibutiioii are. distius•seol in Part IV.
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SUMMARY OF RESxI.TS

Before proceeding to the main body of the paper, we shall state some of
the principal results. It is hoped that this summary will give the casual
reader an over-all view of the material covered and at the same time guide
the reader who is interested in obtaining some particular item of informa-
tion to those portions of the paper which may possibly contain it.

Part I -Shot Effect

Shot effect noise results from the superposition of a great number of
disturbances which occur at random. A large class of noise generators
produce noise in this way.

Suppose that the arrival of an electron at the anode of the vacuum tube
at time i = 0 produces an effect F(1) at some point in the output circuit.
If the output circuit is such that the effects of the various electrons add
linearly, the total effect at time I due to all the electrons is

1(t) = QF(I - t) (1.2-1)
k--no

where the kth electron arrives at t, and the series is assumed to converge.
Although the terminology suggests that U(t) is a current, and it will be
spoken of as a noise current, it may be any quantity expressible in the form
(1.2-1).

1. Campbell's theorem: The average value of 1(1) is

= Pf F(1) di (1.2-2)

and the mean square value of the fluctuation about this average is

ave. [(t) - ((t)]2  v J F2 (t) dt (1.2-3)

2



where v is the average number of electrons itrriving per .ecroild at thw aiioAl.
In this expression 1he electrons, atre suppnoed to arrive indeplendently a:nd at

random. (i dt is the probability that the length of the interval between
two successive arrivals lies betwcen l and I + dr.

2. Generalization of Camphell's theorem. Campbell's theorem gives

information about the average value and the standard deviation of the
p'robability distribution of 1(t). A generalization of the theorern gives

information about the third and higher order mnoments. L.et

1(1) = L.aFQ -) (1.5-1)

where F(t) and tk are of the same nature as these in (1.2--1) and ..- al
a2, ,a, G&, - are independent randcm variables all having the same

distribution. Then the nth semi-invariant of the probability density P(I)
of I = 1(1) is

P= val flF(OndI (1.5-2)

The semi-invariants are defined as the cccfficients in the expansion of the
characteristic function f(u):

log. (,) =(iu)" (1.5-3)

where

f(U) ave. fI P(I)e"lu di

The moments may be computed frcm the V's.
3. As P --- c the probability density P(1) of the shot effect current ap-

proaches a normal law. The way it is approached is given by

PCI ) --W-31 - 3aw
2 (1.6-3)

-- [ ,")(x) + 2 W +"

where the X's are given by (1.5-2) and

a \2 1 dP - __IC
if 2  -0! ~ x V2,rdxn

Since the A's are of the order of ,, a is of the order of t,'12 and the orders of
-- 1 t A2 a-nd C -1, K -812 a -- ri2Or -• N,O,r- and $ar- are P , and v respectively. A



possible use of this result is to dleteminc whether a noise due to random in-
dependent events ocuriring at tile Vate of V, per second may be regarded as
"random noi.Ic" in the senue of lhi.i work.

4. When I(t), as given by (1.5 .1), is analyzed as a Fourier series over all
interval of length T a set of Fourier coefficients is obtained. By taking
many different intervals, all of length T, many sets of coefficients are
obtained. If j, is sufficiently large these coefficicuts tend to be distributed
normally and independently. A discussion of this is given in section 1.7.

Part II-Power Spectra and Correlation Functions

1. Suppose we have a curve, such as an oscillogram of a noise current,
which extends from I = 0 to I = oo. Let this curve be denoted by 1(0.
The correlation function of I(1) is 4(r) which is defined as

•,() Liit1 for
= Limit I 1(t)I(t + r) di (2.1-4)

T-Ca t f

where the limit is assumed to exist. This function is closely connected
with another function, the power spectrum, w(f), of I(0). 1(1) may be
regarded as composed of many sinusoidal components. If I(1) were a
noise current and if it were to flow through a resistance of one ohm the
average power dissipated by those components whose frequencies lie be-
tween f and f + df would be w(f) df.

The relation between w(J) and 41(T) is

4(f) f 4 4f (T) cos 2 wfr dr (2.1-5)

f w(f) cos 22rf df (2.1-6)

When I(S) has no d.c. or periodic components,

w(f) = Limit ) (2.1-3)

where

S(f) j I(Oe-2'"1 ' dl.

The correlation function for

I() = A + C cos (27rfot -

is

C2•() A2 + -i cos 2Trfol (2.2-3)

These results are discussed in sections 2.1 to 2.4 inclusive.
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2. So far we have supposed N(t) to be some definite function for which a
curve may be drawn. Now consider 1(1) to be given by a mathematical
expression into which, besides 1, a number of parameters enter- 1(f) and

t,(r) are now obtained by averaging the integrals over the possible values
of the parameters. This is discltsse(1 in section 2.5.

3. The correlation function for the shot effect current of (1.2--1) is

'P(r) = V F(t)F( + r) di + [V F(t) 7it (2.6--2)

The distributed portion of the power spectrum is

wvi(f) h= 2 ) I j)I

where 4W
s(f) -= L F(t)O& """ di (2.6-5)

The complete power snectrunm has in addition to tv,(f) an impulse func-

tion representing the d.c. component 7(1).

In the formulas above for the shot effect it was assumed that the expected
number, P, of electrons per second did not vary with time. A case in which
v does vary with time is briefly discussed near the end of Section 2.6.

4. Random telegraph signal. Let I(t) be equal to either a or -a so that
it is of the form of a flat top wave, and let the lengths of the tops and bot-

toms be distributed independently and exponentially. The correlation
function and power spectrum of I are

41(T) = a~e-2p•j (2.7-4)

2a2 
'

w~f) + 7 2 (2.7-5)

where p is the expected number of changes of sign per second.
Another type of random telegraph signal may be formed as follows: Divide

the time scale into intervals of equal length h. In an interval selected at
random the value of 7(1) is independent of the value in the other intervals
and is equally likely to be +a or -a. The correlation function of 1(t) is
zero for -r > h and is

for 0 < j r J< h and the power spectrum is

w(f) =-- 2h ( h -- f) 2 (2.7-9)



5. There are two representations of a random noise curnent which are
especially useful. The first one is

N

1(t) (a:, cosn I,1
2 - b+ sin w.t) (2.84)

where a, and bn are independent random variables which arc distributed
normally about zero with the standard deviation x'w-(f5,)Af and where

con - 21rf. , -- nAf

The second one is
N

iC)) E C cos (,"I -1 (2.8-6)
nl-3

where (p. is a random phase angle distributed uniformly over the range
(0, 2r) and

Cn = [2WU,,)4f1 2

At an appropriate point in the analysis N and A" are made to approach
infinity and zero, respectively, in such a aanner that the entire frequency
band is covered by the summations (which then become integrations).

6. The normal distribution in several variables and the central limit
theorem are discussed in sections 2.9 and 2.10.

Part III--Statistical Properties of Noise Current

1. The noise current is distributed normally. This has already been
discussed in section 1.6 for the shot-effect. It is discussed again in section
3.1 using the concepts introduced in Part II, and the assumption, used
throughout Part III, that the average value of the noise current I(I) is zero.
The probability that I(t) lies between I and I + dI is

dl _j,2/2O
== C (3.1-3)

where 4,, is the value of the correlation function, 4'(r), of I(t) at r = 0

0t0 - ,(0) = 0 w(f) df, (3.1-2)

w(f) being the power spectrum of 1(t). 4,o is the mean square value of
1(t), i.e., the r.m.s. value of 1(1) is U

The characteristic function (ch. f.) of this distribution is

ave.t")= -exp- tu2 (3.1-6)
2



2. The probability that I(t) li•s between It and It + dl, and I(I + r)
It(- hctwcen 12 and 12 -- 111 2 hVlwe I iS IihoWen at randOnt is

10,0 C- 2(4,2 _2l'lexl[''I V-+l•2)/11 (3.2--4)

where 4, is the correlation funtijon ýP(r) of /(0):

O(T) w- f v(f) cos 2rfr df (3.2-3)

The ch. f. for this distribuution is

ave. c= (ui + V) 1•VuV] (3.2-7)

3. The exp-ected number of zeros per second of I(t) is

F? 12 [jo fw(f) dI'2
L df (" ' ..

7 "L ,,(o) J f d(f) J
assuming convergence of the integrals. The primes denote differentiation
with respect to 7:

d 2V/'(7) W;d-2, 0 (7).

For an ideal band-pass filter whose pass band extends from f, to fe, tne ex-
pected number of zeros per second is

- - s _J/2
2 [ eSft ] fl (3.3-12)

When fo is zero this becomes 1.155 lb and when f, is very nearly equal to
fb it aplproaches lb ± f..

4. The problem of determining the distribution funclion for the length
of the interval hetween two successive zeros of 1(t) seents to be quite diffi-
cult. In section 3.4 some related results are given which lead, in scme
circumstances, to approximations to the distribution. For example, for
an ideal narrow band-pass filter the probability that the distance between
two succc--sivc ;cro, iic• between r and T + dr is approximately

dr a

2 I1 + a2 (Tr - T )1112
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where

a / -- j !.- :i+

fb and f. being the upper and lower cut-off frequencics.
5. In .ection 3.5 several multiple integrals which occur in the work of

Part III are discussed.
6. The distribution of the maxima of 1(1) is discussed in section 3.6. The

expected number of maxima per second is

F (40-11 v(f) df,I (3.6-0)

For a band-pass filter the exFected number of maxima per second is

f- s-,'1 (3.6-7)

For a low-pa!:s filter wheref 0 - 0 this number is 0.775.b.
The expected number of maxima per second lying above the line 1(Q) 1I

is approximately, when 11 is large,

e-II2Iio X i[the expected number of zeros of I per second] (3.6-11)

where 4'0 is the mean square value of I(1).
For a low-pass filter the probability that a maximum chosen at random

from the universe of maxima lics between I and I + dr is approximately,
when I is large,

v3ye V'iS (3.6-9)
3

where
I

7. When we liass imise through a relatively narrow band-pass filter one
of the most noticeable featurcs of an cscillogram of the output current is
its fluctuating envelope. In sections 3.7 and 3.8 seine statistical properties
of this envelope, denoted by R or R(Q), are derived.

The probability that the envelone lics between R and R + dR is

AR e7""'ý dR (3.7-10)
00
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where 4'o is the mean square value of 7(0). 'Dlie probability that R(1) lies
between R, and R1 -I dR1 and at the same time R(Q -, r) lies between
R, and R2 + dR2 when t is chosen at random is obtained by multiplying
(3.7 -13) by dR1 dR2 . For an ideal bandpaIss filter, the expected number
of maxima of the envelope in one second is

.64l10(1 f0 ) (3.8 .f)

When R is large, say y > 2.5 where

T- =- r.=ta.n, value of Ut(),
0',

the probability that a maximum of the envelope, selected at random from
the universe of such maxima, lies between R and R + dR is approximately

W,-02 dR
1.13(y - 1)e 7-2

410

A curve for the corresponding probability density is shown for the range
o •< y 4. Curves which compare the distribution function of the maxima
of R with other distribution functions of the same type are also given.

8. In section 3.9 some information is given regarding the statistical
behavior of the random variable:

E f 12 Q() d: (3.9-1)

where t4 is chosen at random and 1(1) is a noise current with the power
spectrum w(f) and the correlation function 4,(r). The average value
mr of E is T74 and its standard deviation Ur is given by (3.9-9). For a
relatively narrow band-pass filter

Cr 1

when T~fb - f.) >> 1. This follows from equation (3.9-10). An ex-
pression which is believed to approximate the distribution of E is given by
(3.9-20).

9. In section 3.10 the distribution of a noise current plus one or more
sinusoidal currents is discussed. For example, if I consists of two sine waves
plus noise:

I = P cos pt + Q cos qt + IN, (3.10-20)

where p and q are incommensurable and the r.m.s. value of the noise cur-
rent Iv is 441, the probability density of the envelope R is

R 40 rJo(Rr)Jo(Pr)Jo(Qr)e-•QorI2 dr (3.10-21)

where JO( ) is a Bessel function.



Curves showing the probability dcnsity and distribution function of R,
when Q. ( 0, for various ratios of P/r.m.s. 'N are given.

10. In section 3.11 it is pointed out that the representations (2.8 1)
and (2.8 6) of the noise current as the sum of a great number of sinusoidal
components arn not the only ones which may he used in deriving the results
given in the preceding sections of Part III. Thie shot effect repiestntation

1(1)= FQ( - 4)
-0o

studied in Part I may also be used.

Part TV-Noise Through Non-Linear Devices

1. Suppose that the power spectrum of the voltage V applied to the
square-law device

7 TA • "'•(4.1-i)

is confined to a relatively narrow band. fhe total low-frequency output
current lot may be expressed as the sum

IIt = Id, + It( (4.1-2)

where Id& is the d.c. component and ItI is the variable component. When
none of the low-frequency band is eliminated (by audio frequency filters)

lot 2a (4.1-6)
=2

where R is the envelope of V. If V is of the form

V = VN + P cos pi + Q cos qt, (4.1-4)

where Vjv is a noise voltage whose mean square value is ýo, then

l a + [ ± Pspo + Q2#0o + (4.1-16)

2. If instead of a square-law device we have a linear rectifier,

I . V, <{0 (4.2-1)

the total low-frequency output is

lit =: aR (4.2-2)

1 t



When V is a 'ilie wave p1s11 noise, VK - P ros pt,

/j1 1 2

aJ . F.(-t; 1; .- x) (4.2-3)

2a- (1p + 24'o) (4.2-6)

where 1F, is a hypergecmetric function and

1)2 Ave. sine wave power (4.2- 4

20, Ave. noisc J):,)wcr "

W\hen x is large

I 1~ il (4.2-7)

If V consists of two sine waves plus noise, Id, consists of a hycrgecmetric
function of two variables. The equations running frhm (4.2--9) to (4.2--15)
are conccrned with this case. About the only simple equation is

- 2

= -;I[2Po + + (QI (4.2-14)
7T'

3. The expressions (4.1-6) and (4.2--2) for it in terms of the envelope
R of V, namely

ale aR
2 ant

are special cases of a more general result

lit = Af(R) = F(iu)Jo(uR) du. (4.3-11)

In this expression Jo(uR) is a Bessel function. The path of integration C
and the function F(iu) are chosen so that the relation between l and V may
be expressed as

I fA F(iu)e"' du. (4A-1)

A table giving F(iu) and C for a number of common non-linear devices is
shown in Appendix 4A.

If this relation is used to study the biased linear rectifier.

I fO, V < 1

IV V-B, V >B

11



for the ca.e in winch I' is 'A 4 1P tos pt, we find

d 2 r 2r/'
-, 2 - 1 2 2 (4.3-17)

when P >> I ,:` >> i where io is the mean square value of VN

4. When V1 is confined to a relatively narrow band and there are no
aiildio-frequeecy filters, the• prolbability density and all the associated sta-
tistical lpruppIt its of I t may be obtatined by expressing lie as a function
of the envelope R of I' and then using the probability density of R. When
, is I.' +-1 P tes pi ± (+ ut:s qI this jprobalbility denisity is given by the in-
tegral, (3.10 21) (which is the integral containing three Bessel functions
stated in the above summary of Part III). When V consists of three sine
wavcs plus noise there are four Jo's in the integrand, and so on. Expres-
sions for R- when R has the above distribution are given by equations
(3.1(1 25) and (3.10-27).

When audio-frcquency fiiters remove part of the low-frequency band the
statistical prcJperties, except the mean square value, of the resulting cur-
rent are hard to compute. In section 4.3 it is shown that as the output band
is chosen narrower and narrower, the statistical properties of the output
current approach those of a random noise current.

5. The sections in Part IV from 4.4 onward are concerned with the
problem: Given a non-linear device and an input voltage consisting of noise
alone or of a signal plus noise. What is the power spectrum of the output?
A survey of the methods available for the solution of this problem is given
in section 4.4.

6. When a noise voltage VN with the power spectrum w(f) is applied to
the square-law device

I aV (4.1-1)

the power spectrum of the output current I is, whcn f • 0,
IGO

w(f) a2 f w(x)w(f - x) dx (4.5-5)

where w(-x) is defined to equal w(x). The power spectrum of I when V
is either P cos pt + Vv or

Q(1 + k cos pi) cos qt + VN

is considered in the portion of section 4.5 containing equations (4.5--10) to
(4.5-17).

12



7. A methold discovered independently by Van Vieck and North shows

that tihe correlation fuwttion 'I,(r) of the output currTnt for an unbiaqed
linear rectifier is

+ 2 [4F 2' ;'7 3 (4.7-6)
4 2 214_ 1

where the input voltage is VN. The correlation function k(-r) of VN is

denoted by u0, and the mean square value of VA, is 4,o. The power spectrum
W(U) of F may be obtained from

a

wCJ) = 4 j W(r) cos 2ufr di (4.6-1)

by expanding the hypergeometric function and integrating termwise using

G,,(f j 4,' cos 2rfr dr. (4C-1)

Appendix 4C is devoted to the problem of evalua•ing the "jr ....

8. Another method of obtaining the correlation function 4,(T) of I, termed
the "characteristic function method," is explained in section 4.8. It is
illustrated in section 4.9 where formulas for T(r) and W(J) are developed
when the voltage P cos pt + V, is applied to a general non-linear device.

9. Several miscellaneous results are given in section 4.10. The char-
acteristic function method is used to obtain the correlation function for a
square-law device. The general formulas of section 4.9 are applied to the
case of a Pt" law rectifier when the input noise spectrum has a normal law
distribution. Some remarks are also made concerning the audio-frequency
output of a linear rectifier when the input voltage V is

Q(1 + r Cos 0C) Cos q1 + V,4.

10. A discussion of the hypergeometric function ,F,(a; c; x), which often
occurs in problems concerning a sine wave plus noise, is given in
Appendix 4B.

PART I

TILE SHOT EFFECT

"The shot effect in vacuum tubes is a typical example of noise. It is due
to fluctuations in the intensity of the stream of electrons flowing from the
cathode to the anode. Here we analyze a simplified form of the shot effect.

13



1I. T: PZOI)IAnMU• Y OF EXACTL.v K ErrEXmONs AvtivINo AT 'lim.

ANoDr IN "Lm . T

"Tlhe fluctuations in the electron :;trcatm are supposed to he random. We
shall treat this raldonii('5.s as follows. We count the number of electrons
flowing in a long interval of time T measured in seconds. Suppose there
are K, . IAepeating thils comiting l)rOCess fox many intervals all of length
T gives a set of numbers K2 , Ka - -- K,, where M is the total numehr of
intervals. '11e average number v, of electrons per second is defined as

v =Li KX + K, ... 4+ K.,(~i1
Lim ~± ft:.±''(iiAt --*0 M1T

where we assume that this limit exists. As M is increased with T being
held fixed some of the K's will have the same value. In fact, as M increases
the number of K's having any particular value will tend to increase. This
of course is based on the assumption that the electron stream is a steady
flow upon which random fluctuations are superposed. The probability of
getting K electrons in a given trial is defined as

p(K) = Lim Number of trials giving exactly K electronsP--K ) =. . . . . . .. Min -. . . . . ...- (1.1- 7 )

Of course p(K) also depends upon T. We assume that the random-
ness of the electron stream is such than the probability that an electron
will arrive at the anode in the interval (1, 1 + 6t) is tAt where at is
such that vAt << 1, and that this probability is independent of what has
happened before time t or %%ill happen after time I + At.

This assumption is sufficient to determine the expression for p(K) which is

p(K) = KI -I CPT

This is the "law of small probabilities" given by Poisson. One method
of derivation sometimes used can be readily illustrated for the case K = 0.

T
Thus, divide the interval, (0, T) into M intervals each of length At = I
At is taken so small that PAt is much less than unity. (This is the "small
probability" that an electron will arrive in the interval At). The prob-
ability that an electron will not arrive in the first sub-interval is (1 - VAt).
The probability that one will not arrive in either the first or the second
sub-interval is (1 P AIt). The probability that an electron will rot arrive
in any of the M intervals is (1 - ,At)u. Replacing M by TIAI and letting
At -* 0 gives

p(0) e

11



The expressions for p(1), p(2), ... p(K) may be: derived in a solnewhat
similar fashion.

1.2 STATE.NTor 0V CA.•tPI".'. "li".O.M

Suppose that the arrival of an electron at the anode at time t -- 1) produces,
an effect F(t) at some point in the output circuit. If the outtl.ut circuit
is such that. the effects of the various electrons t(]([ linearly, the total effect
at time I due to all the electrons is

-on1(1) > LU,( - to) (1.2-1)

where the kth electron arrives at ht. and the series is assumed to converje.
Campbell's theorem2 states that the average value of I(I) is4 M

V(t) if FQ(t) dt (1.2-2)

and the mean square value of the fluctuation about this average is

(1(t ("""" ,&-* .. l2° di (1.2-.3')

where P is the average number of electrons arriving per second.
The statement of the theorem is not precise until we define what we mean

by "average". From the form of the equations the reader might he tempted
to think of a time average; e.g. the value

Lim- f jI(t) dt (1.2-4)

However, in the proof of the theorem the average is generally taken over

a great many intervals of length T with I held constant. The process is
somewhat similar to that employed in (1.1) and in order to make it clear
we take the case of I(ti for illustration. We observe I(I) fcr many, say M,

intervals each of length 7 where T is large in comparison with the interval
over which the effect F(t) of the arrival of a single electron is appreciable.
Let .(1') be the value of l(t), I' seconds after the beginning of the n' in-
terval. t' is equal to I plus a constant depending upon the beginning time
of the interval. We put the subscript in front because we wish to reserve
the usual place for another subscript later on. The value of I(t') is then
defined as

I(I-) = Li [it lil(1') + 21(1') + ... + ,g(t')l (1.2-5)
SMM

and this limit is assumed to exist. The mean square value of the fluctua-
tion of 1(t') is defined in much the same way.

2Proc. Camb. Phil. Soc. 15 (1909), 117-136, 310--328. Our proof is similar tn one given
by J. M. Whittaker, Proc. Ca",b. Phil. Soc. 33 (1937), 451-458.
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Ac tually, as the cquation.s (1.2--2) and (1.2- 3) of Carnilln!l's tlworem
show, thcse averages and all the similar avcragts encountcred lalcr turn
out to he indcFllendent of tlie tilnl. Whcln this is till and when the AM ill--

tervals in (1.2-5) are taken cotisecutivcly the time average (1.2 4) and the
average (1.2- 5) leceme the same. To slhow thi4 we multiply both si.cs of
(1.2--5) by dt' and integrate from 0 to T:

/(I') L imit1 I(') dip;r.-000 MT "- o ,,~'

Limit - I(e) 7' ((1) 6)
-M-.w MT (o

and this is the same as the time average (1 .2-4) if the latter limit exists.

1.3 PROOF OF (?AMPBEm..'s TiHFOREM

Consider the case in which exactly K electrons arrive at the anode in an
interval of length iT. Before the interval starts, we think of thcse K elec-
trons as fated r.. arre in ;t., i..... (0), ...T) ( but any particular electron is

just as likely to arrive at one time as any other time. We shall number
these fated electrons fr:m one to K for purposes of identification but it is to
be emphasized that the numbering has nothing to do with the order of ar-
rival. Thus, if t be the time of arrival of electron number k, the probability
that l& lies in the interval (t, t + dt) is dt/T.

We take T to be very large compared with the range of values of I for
which F(t) is appreciably different from zero. In physical applications
such a range usually exists and we shall gcall it A even theugh it is not very
definite. Then, when exactly K electrons arrive in the interval (0, T) the
effect is approximately

K

IK() = . F(@ - 4) (1.3-I)
A-1

the degree of approximation being very good over all of the interval except
within A of the end points.

Suppose we examine a large numlber M of intervals of length T. The
number having exactly K arrivals will be, to a first approximation M p(K)
where p(K) is given by (1.1--3). For a fixed value oft and for each interval
having K arrivals, Il(t) will have a definite value. As M-' o, tile average
value of the F (t)s, obtained by averaging o% cr the intervals, is

i'(t) -• "K

7'k. '-I

Si(13-2)
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and if A < I < T ---- A, we have effectively

I.(t) I dt (1.3 3)

If we now average 1(t) over all of the M intervals itstead of only over
those having K arrivals, we get, as M -- ,-,

C-0

K (,'T) ear i(t) (.I
v T KI 00

= f' F(t) dt (1.3-4)

and this proves the first part of the theorem. We have used this rather
elaborate proof to prove the relatively simple (1.3-4) in order to illustrate a
method which may he used to prove more complicated results. Of course,
'1, -1) Could be etal, he 1 , -. t, that tho integral iq the average value
k1 .'Y "Xj Couii~ldi 1- 1- ...! " - --s .. .•

of the effect produced by one arrival, the average being taken over one
second, and that P is the average number of arrivals per second.

In order to prove the second part, (1.2-3) of Campbell's theorem we first
compute P(1) and use

(f(t) -( ))2 2(1) - 2 I(1)1-t) + I1j)

= N- )' (1.3-5)

From the definition (1.3- 1) of 1,(t),
R K

12() = Z, E' F(t - tk)F(i - t.)
k•I maj

Averaging this over all values of I,, t2 , • Kwith t held fixed as in (1.3 2),
K K fT_ 1 . ra 1-ý F f1 F(I - t,)F(I- I..)

The multiple integral has two different values. If k = in its value is
FNI - t)di

and if k • in its value is

t F(t1k) t j EQ - tA.) dt.
17T
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>'wintlin, up the numlwr of I riuls ill the dolibl sum shows l ,ati thre are A
,t hell LLavinug li- hi si- valu' awll( A:? K lavi ng Ihe second Value. IInn I ,

if A K< I T '- A we have

K~~ ~ FQKK dt][f

l• (1) P- 1 7,'t ,t4-12 0) F(1) tit]

Averaging over all thx intervals instead of only tho.se having K arrivals
Vrives

13) - )_7. p(K) 'Ik0

f• t1,) di -1 1()")2

where the sumumi iron wiilli rspect to K is lprformed as in (1.3 4), and after
.uttirnalio the value (1.3 T) for 1(t) is used. (Comparison with (1.3-5)

cstablislWS til seunid parul of (Canitibell's theorem.

1.4 lEi. l)SrRItJ'rIo"N OF I(t)

Whetn certain conditions are satisfied the proportion of time which I(t)
speiwIls in the ratnge I, I + dl is P(!)dI where, as v - o oo, the probability
(le'lsity J'(I) tpproalhes

where 1 is Ihe raLVCUrgC of I(t) given hy (1.2- 2) and the square of the standard
dt.vtialion o j, i.e. the variance of 1(t), is given by (1.2 -3). This normal
distribution is the one which would Ibe expected by virtue of the "central
lihit theorem" in prol•hdlility. This states that, under suitable conditions,
the 1sliribution of the sum of a large number of randonm variables tend.s
toward a nuimnal li.tridmtuilt whose variance is the sum of the variances
of lhe inndividual variables. Similarly the avwrage of the normal rlistribu-
lion is the sun) of the averages of the individual variables.

So far, we have been speaking of the limiting form of the probability
density P(J). It iN poo:ible to write down an explicit expression for P(I),
W JIliih, holisevei, iS. (il1t: Involved. lhorn this expression the limiting form
may 1i,: obtaifluI. WXe now ol.iain this expression. In line with tihe dis-
, ussinm given of C()lnlwcll's the'orem, we seek t re probahility density P(1)

of the Valhic.s of M(t) oidc.Crvcd at I se~onlds front the beginning of each of a
large number, M, o•f in tervAis, each of length 7'"
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P'robhalbility that lit) lit's in mailsc (1, 1 ]( df)

> .• l'roaI 311lily ,f exacltly & arrivals) X

(1'rolbalility tlhat if thetre are exactly

A anrivals, IA11) lies inI (I, f +- dl)).
Deknoting i1 ' last proib;duili ty II the subyzttion ,y l•.1),/[, using liotationi

introducedl earlier, anil cancelling out Ilt: fa'. I•or dl H ivc.

IXI) = S p(K)PA (1) (1.4-2)

We shall compute 1'A,(l) by the method of "chlaracteristic functions"" 8 from
the deIfinition

tX(t) = F( - 1) (1.3-1)

of IKQ). The method will be used in its simplest form: the probability that
the sum

aL + X3 + - + -

of K independent random variables lies between X and X + dX is

dX-L f c iI (average value of c% dl, (1.4-3)

The average value of e ': i.e., the characteristic function of the distribution
of q , is obtained by averaging over the values of xk . Although this is the
simplest form of the method it is also the least general in that the integral
does not converge for some important cases. The distribution which gives
a probability of I that xi- 1 and ' that Xk= + 1 is an example of such a
case. However, we may still use (1.4 3) formally in such cases by employ-
ing the relation

f &e-"" du= 27rr(a) (1.4-4)

where 5(a) is zero except at a = 0 where it is infinite and its integral from
a r- -e to a = +E is unity where e > 0.

When we identify xk, with F(t - IA) we see that the average value of
e is

f-. eXI [iuF(1 - 1)1 dt,

'The essentials of this method are dcte to Laplace. A few remarks on its history are
given by E. C. Molina, Bull. Ans-r. Math. Soc., 36 (1930), pp. 369-392. An account of
the method may be found in any one of several texts on probability theory. We mention
"Random Variables and Probability Distributirms," by 11. Cram.r, Camb. Tract in
Math. and Math. Phys. No. 36 (1937), Chap. IV. Also "Introduction to Mathematical
Probability," by J. V. Uspensky, McGraw-HIill (1937), pages 240, 264, and 271-278.
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All of the K characteristic functions are the same and hence, from (1.41- 3),
r( Mld[ is

dl . 1 e p [iuF,( -- I 1)J7 du

Although in deriving this relation we have taken K > 0, it also holds for
K = 0 (provided we use (1.4 -4). In this ca:e Poll) = 6(I), because ! = 0
when no electrons arrive.

Inserting our expression for PD(l) and the express-ion (1 1-1) fnr h(A)
in (1.4-2) and performing the summation gives

P(M) =,- 2 o exi" -ili -T

1, 7 exp [iuF( - r)] dr) du (1.4-5)

The fidt e'ynonrntii l ; x h. ;tnil;no,1 cnntpiniq hr- ;....

------------ -- T--'------

permits us to write

-PT + v j exp iuF(l - r)] dr = v (exp [iutP(t - r)j - 1) dr

Suppose that A < t < T - A where A is the range discussed in connection
with equation (1.3 -1). Taking IF(Q - r) I 0 for It - r > A then
enables us to write the last expression as

p ep" - 11 di (1.4-0)

Placing this in (1.4 5) yields the required expression for P(a):
2Ja l )" (1u+a f ~",'," 11'(l) = exp ihu + p t -- Id! dis (1.4-7)

Ai idca of the •inulitio.s un,ler which Ole normal law (1.4--i) is ap-
proached may he obtained from (1.4- 7) by expanding (1.4 -6) in powcers of
u and determining when the terms involving u and higher powers of ui
may he neglected. This is taken up for a slightly more general form of
current in section 1 .6.
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1.5 E•XTEI.;NSI()N orF ( rAMPAE:I.u. 'III'IORIA;

In s.ction 1.2 we have stated (Cailn(hll's tlworrm. flere we shall give
an extension of it. III place of Ihle xpre.-sion (1..2 1) for the 1(N) of the shot
effect we shall deal with the current

1wo

1at) > ,tF(t - IA;) (1.5-1)

where F(t) is the same sort of function as before ald where al , a2, - -a -

ilk, - -- are independent random variables all having the same distribution.
It is assumed that all of the moments a- exist, and that the evenlts occur at
rand omn

The extension states that the nth swui-idnv;ri;Lnt of the probability density
P(I) of I, where I is given by (1.5-1), is

A." [ 0a (F,)J" dl (1.5-2)

where v is the expected number of events per second. 'Th seni-invariants
of a distribution are defined as the coeflicients in the eap'.ins

log, (ave. eC") = F2 __ (i)" + 1)(U)(
n-i Ill

i.e. as the coefficients in the expansion of the logarithm of the characteristic
function. The A's are related to the moments of the distribution. Thus if
MIn, , M -2 denote the first, Seconi. --. moments about zero we have

ave. eil' = 1 + On (iu) + O(m

By combining this relation with the one defining the X's it may TIn shown that

1 =Ml X
P = M2 = X2 + XIM 1

P i• n ,= As +± 2m1 + XM

It follows that A1  7 1and \ 2  ave. (I - 7)2. Ience (1.5 2) yields the
original statement of Campbell's theorem when we set n equal to onee and
two and also take all the a's to be unity.

The extension follows almost at once from the generalization (if expressionI
(1.4 7) for the probability density J"(1). By proeseding as it :-c-ttion 1.4

and identifying Xk with adkt -fI) we see that

ave. e "i - 1" "cr
C~. f q(a) da CXJ) [iua(I - J)] dt
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whcre q(,) is iIwh prodbability dHcisily function for the a'". It tur1)1 ot that

Owt ;robal )IiiyV leu 1,iiv I'(I) if I aw I(fifled by (1.5 1) is

1 " 1 t \J) (if v1 fi q(a) da

f "'"' - (1 )d) du (1.5-4)

"The qigariiinm ,f the thar-hterislic fiit io1 (if P(1) is, frfJm (1.5 4),

f q(a) da - lidt

00 ~ -(j' 1 f 400

- -nl, 0 q(a) da a" F"(E ) di

Comparison with the series (1.5-3) defining the semi-invariants gives the.
extension of Camplbell's theorem stated by (1.5- 2).

Other extensions of Campbell's theorem may be made. For example,
IuiC ... e CXJ)C5.i. "1 1) for 1(i) that i1 , ti, , while still

ranlom variables, are no longer necessarily distributed according to the
laws assumed above. Suppose now that the probability density p(x) is
given where x is the interval between two successive events:

12 = It + aX1 (1.5-5)

18 = t2 + X2 -t1 + X + XA

and so on. For the case treated above

p(x) = PC (1.5-6)

We assume that the expected numbter of events per second is still v.
Also we take the special, hut important, case for which

F(1) = 0, t < 0 (1.S-4)

F'(t) ", t > 0.

For a very long interval extending from I = 11 to t = T ± tI inside of which
there are exactly K events %c have, if I is not near the ends of the interval,

1(t) = a(1 - t1) ± al21'"(t -b- -) +
+I -. z kf *l -;-- . . . -R

= aF(t') + a2'(t' - xi) 4- 4- ,s-. "(t' -K .4- .1. X x1)
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~21.Q'1) (1~ 2 1.'I(t _ XI) +P (12J S'2 @

ax 2l2P~'FI it x,) -K )I aj

+1 2a12a,1"'\t' - XOW .1- xj ,) 4-J

where '=2 t If wr integrate ]"(I) ovcr the eiutirr interval 0 <1' 7 1'
anid drop the primies we get app~roximately

fT 12Qt)dt =-(fl ± ± '4 WKI- 0)

± azav x ) -- 2a u (a + .) + + 2ataK.,1q1(xj ± + XK()

+ 2a2a3%dx2) + + ± 2a~aKgAP(xn)

W~here

f7 I'(fl1' - x) dxr

Ka2 + + 2__
-i - viO)

I K
-[a, a2 SO(xi) + a2aa3 w(x2) + . + 0x ar+i r(x41 average 0 k Ga&+i (x&,)

=~ d2 j (dx) p(x) dx-

[a, a3'P(XI X2)T ave. ak ak-+59(Xk, ± x&A)

iC 2f xf rpr)pxsri + x2)

Con seq uently

1 121() Lim i- J() di

- a2ip(O) + 2pd*3[ feP(xX.(x)dx

+ f dx1 f x- dp (xi) p (x-2 ) v(.x + x.-) +

For our special exponential form (1.5 7) for F'(t),

=-a
Sý7( x) 2a
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and the multiplhe integrals occurring in the exp)ression for 12(t) may be written
in toryns of pow(ers of

q p(x)e dx (1.5--8)

Thus

2 r -I(t) = tq +- ± 2 u'v q
l--q

and since
7(t) F t = yl1y

we have

Tfl\ -,a r2, ( 2 a - 0_5 9)
k 1G -,V - 2a ' \/ Lv(i -q) . (1" ')

Equations (1.5 8) and (1.5 9) give us an extension of Campbell's theorem
subject to the restrictions discussed in connection with equations (1.5-5)
and (1.5-1). Other generalizations have been made4 but we shall leave the
subject here. The reader may find it interesting to verify that (1.5-9)
gives the correct answer when p(x) is given by (1.5 6), and also to investi-
gate the case when the events are spaced equally.

1.6 APPROACH or DIsTRIBUTION OF I TO A NORMAL. LAW

In section 1.5 we saw that the probability density IJ(f) of the noise current
I may be expressed formally as

PIU) + I exp -ifl + Z (iu)"X/n! du (1.6--1)

where X, is the nth semi-invariant given by (1.5 2). By setting

2

x I- (1.6-2)

See E. N. Rowland, Proc. Camb. Phil. Soc. 32 (1936), 580 -597. lIe extends the
theorem to the case where there are two functions instead of a single one, which we here
denote by 1(I). Accordingi t) a review in the Zentrallhatt far Math., 19, 1. 224, Khint-
chine in the hull. Aad.. S6. t;RSS, s'r. Math. Nr. 3 (1938), 3131322, has continued and
made precise the earlier work of Rowland.
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expand ingi,

U-)

as a power scries in Ii, integrati mg t1Frm -1ic u.ni!

);.L (ir)" exC, [-iuox -W 21u - ( D" ."(),

I dn

1!2

and finally collecting terms accordhing to their order in l1owers of 1 gives

-(a)X -+ X4 ± 2 or (x)"", 3! s° + 1 4! 72 +

(1.6-3)

The first term is 0(- 112), the second term is 0(; '), and the terin within
brackets is 0(v-3 1 2 ). 'his is Edgeworth's series.' The first term gives the
normal distribution and the remainitig terms show how this distribution is
alpproached a-, --- x .

1.7 TiE. FOURIE.R ('OMPONENTS or 1(t)

In some analytical work noise current is represented as

(t) = 2+ a, cos + b sin) (1.7-1)

2 7' T

where at a suitable plac in the work T and , are allowed to become infinite.
The coefficients a,, and b, , I < n < N, are regarded as independent random
variables distributed about zero according to a normal law.

It appears that the association of (1.7-1) with a sequence of disturbances
occurring at random goes back many years. Rayleigh 6 and Gouy suggested
that black-body radiation and white light might both lie regarded as se-
quences of irregularly distributed imiwlmus.

Einstein7 and von l.aue have discussed the normal distribution of the
coefficients in (1.7- 1) when it is used to represent black-body radiation, this
radiation being the resultant produced by a great many independent os-

6 See, for example, pp. 8•-87, in "Random Variaileq and Probability Distributions"
by 11. Cramer, Carnbridge Tract No. .36 (1937).

'Phil. Map. Scr. 5, Vol. 27 (1S8!i) pp. 410 469.
7 A. Einstein and 1.. llopf, A nn. d. Physik 33 (1910) pp. 1095 1115.

NI. V. Laue, Ann. d. Physik 47 (1915) pp. 853 878.
A. Einstein, A tin. d. P'hvsik 47 (1015) pR. 879 85
M. V. Laue, Ann. d. Physik 48 (1915) pp. (6M-680.
I am indebted to 1'ruf. Goudsmit for these references.
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cill .'tI s. Sonme argtimien ar.,t as ift to whtlicr the u ef lhisnits il (1.7 i)
were :m•listically indejilient or RlOt. It Wa'; 1inallv decidhd that the-y
arce indj•-zhlent.

The shtit efflet current has bleen re;lrumsen1ed in tlhis way I y "Whottky.
The I'oaircr si'ri's relresentation has lheen discussed by 11. Nyquist Oand
also ly (by snit aln Weiss. Remarks made by A. Shuuster"' are equiv-
alent to the statement tIa:tt a,, and b,, are distributed normally.

In view of this wealth of information on the subject it may apecar super-
Iluous tU say anything about it. lowevcr, for thc sake of compl eteness,
we shall oulline the thoughts which lead to (1.7- 1).

lI line with our usual approach to tile shot Cffct(', we suppose that exactly
K electrons arrive during the interval (0, T), so that the noise current for
the interval is

K

1,(1) >j (I - 1,) (1.7-2)
k-I1

The coefficients in the Fourier s•rics exp~ansion of 10t) over the interval
(0, T) are "zK and b., wherc

a- K 2 J K T " - LA.) Ji 2.It dtL T
-F exp *Zinz (U + 1k) di

= Re-"0 • e->1 ' & (1.7-3)
k-1

In this expression

-27Ttk

7' (1.7-4)

R-. e - iS, - j FQX' tl dt

Ii the earlier sections the arrival times I I, 12, IK were regardled as K
idmlependent random variable each distributed uniformly over the interval
(0, T). Hence the At's may be regarded as random variables distributed
uniformly over the interval 0 to 2 r.

Incidenttally, it will he noted that in (1.7-.3) there occurs the sum of K
randomly oriented unit vcctor.. When K becomes very large, as it does

' A|tin. d. Physik, 57 (1918) 1:p. 541- 367.
50Iiil u,,blishud Memoraihinm, "liht-luations in Vacuiulm Tube Noise and the I.ike,"

.March 17, 1932.
"t' Investigation of luiddcn Periodicitics, Terrestrial Magnetism, 3 (1898), pp. 13,41.

Sec e;lw ially przxýoiliuicis I and 2 om page 26 ('f Schuster's paper.
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when v -c>, it is known that the real and in aginary parts of this suni are
random variables, which tend to hecoine independent and normally dis-
trilalted about zero. This suggests the matnner in which the normal this--
tribution of the coefficients arises. Averaging over the Os's in (1.7 3) gives
when n > 0

(. K ha 0 (1.7 5)

Sonic further algebra gives

=n b2, if
n (1.7-6)

Sb, = = bntr. = 0

where n $ m and n, in> 0.
So far, we have been considering the case of exactly K arrivals in our

interval of length 7'. Now we pass to the general case of any number of
arrivals by making use of formulas analogous to

-- 0a2. = A-I (1.7-7)

as has been done in section 1.3. Thus, for n > 0,

4a, = _R, = or

2, -- =,0=R• -t. (1.7-8)

a.b, = a,1a0 , "- bb-., = 0, is # v

In the second line we have used o,, to denote the standaid deviation of an
2and b.. We may put the expression for a, in a somewhat different form

by writing

f=7 Tn"Af, Af (1.7-9)

wheref,3 is the frequency of the nth component. Using (1.7-4),

=n£ =e''' d2 (1.7-10)

2

Thus, a. is proportional to P/IT.
The probability density function P(am, .. a, b,, ... •bN) for the 2N co-

efficients, ai, -.- ai,, bi, -- " bt may be derived in much the same fashion
as was the probability density of the noise current in section 1.4. Here N
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is arbitrary but ftixed. The expression analogous to (1.4 5) is tile 2N fold
integral

P(at, b,) : (2wY)"V dnj .. f dvv (1.7-11)

exp [-i(an i,. + b nrx) -- + PTE]

where
=p i (u7 - vs,-) cos nO + (tC, - uS,) sin no]

(1.7-12)

in which U,, - iS,, is dlefiC(d as the Fourier transform (1.7-4) of F(S).
The next step is to show that (1.7--11) approaches a normal law in 2N di-

mensions as P -- o. This appears to be quite involved. It will be noted
that the integrand in the integral defining E is composed of N factors of the
form

exp [ip,, cos (nO -

= Jo(p,,) + 2i cos (nO - •,,)Jt(p,,) 2 cos (2n0 - 24,,,)J 2 (p.) +

where
(U2 2. (,,,+2)

+ +2 (u. + vS2.

As v becomes large, it turns out that the integral (1.7 11) for the prob-
ability density obtains most of its contributions from small values of u and t%
By substituting the product of the Bessel function series in the integral for
E and integrating we find

N

E II Jo(p,,) + A + B + C

where A is the sum of products such as

-2i cos (%&it - 4- ,P)Ji(pJ))i(pOJ,(p&,4 e) times N - 3 Jo's

in which 0I < k < I and 2 < k + I < N. Similarly B is the sum of products
of the form

-21 cos (42k - 2#k)JI(P2k)J 2(pk) tines N - 2 JA's

( consists of terms which give fourth and higher lowcrs in u a•nd r. °lhere
are roughly N2V/4 terms of form .t and N/2 tenrms of form B.

Expadting tlw lBessl futictios,, neglectiiig all 1iowers abovU tihe third and
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proceeding as ini section 1.4, will give lts tile normal distriliution pills the lust
correction term. It iq rather a messy affair. An idea of how it looks way
be obtained by taking the special cstee in which F(1) i% alt even function ef I
and neglecting terms of type B. Then

(a,, . , b , --- b ) (1 1-t7) P' " - (1.7--12)

where

IL bq
'n fin

ii 2v)112 >2 k I~4x Y6t -13)
(2vT) I- ['.t(xt - yt y + 2 yL eyk3At] (1.7-13)

k.t,

and the summation extends over 2 < k + I < N with k < 1.
It is seen that if T ant' N are held constant, the correction term n ap-

proaches zero as v becomes very large. A very rough idea of the magnitude
of I may be obtained by assuming that unity is a representative value of the
x's and y's. Further assuming that there are N2 terms in the summation
each one of which may be positive or negative suggests that magnitude of
the sum is of the order of N. Hence we might expect to find that -q is of

the order of N(2vT)-f".

PART IT

POWER SPECTRA AND CORRELATIOI)N FUNCTIONS

2.0 INTRODUCTION

A theory for analyzing functions of time, t, which do not die down and
which remain finite as I approaches infinity has gradually been developed
over the last sixty years. A few words of its history together with an ex-
tensive bibliography arc given by N. Wiener in his paper on "Generalized
Harmonic Analysis".1  G. Gouy, Lord Rayleigh and A. Schuster were led
to study this problem in their investigations of such things as white light
and noise. Schuster"2 invented the "periodogram"' method of analysis which
has as its object the discovery of any periodicities hidden in a continuous
curve representing meteorological or economic data.

"1 Ada Math., Vol. 55. pp. 117-258 (1930). See also "Harmonic Analysis of Irregular
Motion," Jour. Hath. and Phys. 5 (1926) j1. 99--l8.

12 The periodogram was first introduced by Schuster in re!erence 10 cited in Section
1.7. He later modified its definition in the Trans. Camih. Phil. Soc. 18 (1903), pp. 107-
135, and still later redefined it in "The l'eriodogram and its Optical Analogy," Proc. Roy.
Soc., London, Ser. A, 77 (1906) pp. 136-140. In its tinal form the periodograrn is equiva-
lent to jw(f), where w(f) is the power spectrum defined in Section 2.1, plotted as a func-
tion of the period T - (21rl)--l.
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"The corr'lati in fhlm-liom, which tuln.s u t to In a very useful tool, apparo

litly was innutittUc, by GV (1. I. l vlhr.a Rccvnt'. it it ha bIeen usedI by u'ite

a ft'w wrilert , r ii tliti iii;tt licih tical thcorv 14 tillu'|ulence.

Ill s'ct- ll w 2.1 Ow pIniWer '111d y et r't in a ml c latiO!1 fl itittioil of a sj'citit

function, such as oc givnctb 1)y a curve extendting to t -- M, are defined bh

e(piatitons (2.1 3) andI (2.1 4) re1pecti'v'l". 'fiat they are related by the

Fourier inve-:miu' forniular (2.1 5) ;Ln(I (2.1 6) is merely stated; the dis-

cusiII of time mnetholl of pro-of being delayed until sections 2.3 and 2.4. In

section 2.3 a: dist ussion lhWCed on gairier series is given and in section 2.4 a

parallel treatriett starting with ParFeval's integral theorem is set forth.

"Tht results as given in section 2.1 have to he supplemented when the func-
tion being analyzed contains a d.c. or periodic components. This is taken

up in section 2.2.
'The first four sections deal with the analysis of a specific function of t.

However, most of the applications are made to functions which behave as

though th(-y are more or less random in character. In the mathematical

analysis this randomness is introduced by assuming the function of t to be

also a function of suitable parameters, and then letting these parameters be
random variablks. This qucstion is taken up in section 2.5. In section 2.6

the results of 2.5 are applied to determine the average power spectrum and

the average correlation function of the shot effect current. The same thing
is done in 2.7 for a flat top wave, the tops (and bottoms) being of random
length. The case in which the intervals are of equal length but the sign

of the wave is random is also discussed in 2.7. The representation of the

noise current as a trigonometrical series with random variable coefficients
is taken up in 2.8. The last two sections 2.9 and 2.10 are devoted to prob-

ability theory. The normal law and the central limit theorem, respectively,

are discussed.

2.1 SOME RESuLTs -OF GENERALIZED 1IARMONIC ANALYSIS

We shall first state the results which we need, and then show that they are
plausible by methods which are heuristic rather than rigorous. Suppose
that (t,) is one of the functions mentioned above. We may think of it as

leing specified by a curve extending from t = - to I = ca. 1(1) may

be regarded as composed of a great number of sinusoidal components whose
frequencics range from 0 to + oc. It does not necessarily have to be a noise
current, but if we think of it as such, then, in flowing through a resist•a.ce of

one ohm it will dissipate a certain average amount of power, say p watts.

Is Diffusion by Continuous Movements, Proc. Lond. Malth. Soc., Ser. 2, 20, pp. 196-
212 (1920).

14 See the text "Modern Developments in Fluid Dynamics" edited by S. Goldstein,
Oxford (1938).
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"Thla.t Fortioll ,f p aiisi ug from lihe comlonentIs having fuiettlu ics' betwceen

f anif I- (If will l deoitt'ld by ii(f)dJ, and owcIcJilt'itly

S- f ((f)df1-1)

Sim-c -e.(f) Is thei .lccl runi (iff tlie avecrage power we shall call it the "po-wer

spelrtruii'" ,f 1(1). ri has; lie diiftisions (if cnergy and on this actotmit is
frequently called the "'ocrpzy-fre(tc1I y :,i'ct run' of ](I). A muheiniatikal
formullation of this (list ussitii leads te a clear it dcefinition of 21(f).

Let l,() Ibe a fuiit- iou of t, whiclh is zero outside the interval 0 < i < Tand
is equal to I(t) inside the interval. Its sjecttruin S(f) is givein by

S() = f I()e 2•rif d, (2.1-2)

The spectrunt of the power, 7u(f). is defined as

= 2S(f) 2  (2.1-3)
T- .M T

where we consnicr mnly values of f > 0 and assume that this limit eZxists.
This is substantially 1he definition of -,vf) given by J. R. ('arson3 s and is
useful when I(/) has no t-'riodic terms and no d.c. (-:mli 'nen1t. In the
latter ca.e (2.1 3) must either be silil)lCflelentc(l by additional definitions or
else a somewhat different method of alplproach used. These questions will
be dismussed in section 2.2.

The currelalution hi ocion 4(r) of !Q) is defined by the limit

bimnt 1 1(1)1(1 + -r)d (2.1-4)

which is assumed 1o exist. #(T) is ClO:cly related to the correlation cocfli-
cients used in statistical theory to measure the correlation of two random
variables. In tlhe ir(vent ca.se the value of 1(t) at time t ik one variable and

its value at a different time 1 4I- r is the ot(hcr variable.
The spectrum of the power w(f) and the correlation function 4a(r) are

related by the equations

w(f) 4 jf O(T) cos 274r dr (2.1-5)

4(r) - f w(J) cos 2/rf (if (2.1--,)

t6 "The Statistical Fnergy 'lrcruelncy Slpectrum of Ralmil I Disturhances," B.S.T.J.,

Vol. 10, pp.3.74-381 (1931).
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S It is seen that V () is an even function of r and that

0(0) = p (2.1--)

When either 4,(r) or w(f) is known the other may be oltained provided the
corresponding integral converges.

2.2 POWEFR SPECTRUM FOR D.C. AND P.RIODIC COMPONENTS

As mentioned in section 2.1, when 1(l) has a d.c. or a periodic com--
ponent the limit in the definitinn (2.1 3) for uv(f) (toes not exist for f equal
to zero or to the frequency of the periodic component. Perhaps the most
satisfactory method of overcoming this difficulty, from the mathematical
point of view, is to deal with the integral of the power spectrum."'

vv(g) dg (2.2-1)

instead of with w(f) itself.

The definition (2.1-4) for 41(T) still holds. If, for example,

(1') = A + C cos (27rfo -1 (2.2-2)

4(r) as given by (2.1-4) is

42-) = A2 + - cos 2rfor (2.2-3)
2

The inversion formulas (2.1--5) and (2.1-6) give

fw(g) dg = .- , () slic 7r
go (2.2-4)

00r) = j cos 2rfr d[j w(g) dg]

1' This is done by Wiener,"1 loc. cit., and by G. W. Kenrick, "The Analysis of Irregular
Motions with Applications to the Energy Frequency Spectrum of Static and of Telegraph
Signals," Phil. Mag., Ser. 7. Vol. 7, pp. 176-196 (Jan. 1929). Kenrick appears to be one
of the first to apply, to noise problems, the correlatir' functi.rn mlthnd of camputing the
power spectrum (one of his problems is discussed in Sec. 2.7). Ile bases his work on re-
sults due to Wiener. Khintchine, in "Korrelationstheorie der stationaren stochastischen
Prozesse," Math. Annalen, 109 (1934), pp. 604-615, proves the following theorem: A
necessary and sufficient condition that a function R(a) may be the correlatian function of
a continuous, stationary, stochastic process is thatR(g) mav be expressed as

R() f cos ix dF(x)

where F(x) is a certain distribution function. This expremsian for R(t) is essentially the
second of equations (2.2-4). Khintchine's wark his b.;n extenlel by H. Cramer, "On
the theory of stationary randam processe3," Ann. of MAat., Ser. 2, Va3l. 41 (194)), pp.
215-230. However, Khiatchine and Cram-Sr appear to be interestel pri-nirily in ques-
tions of existence, representation, etc., and da nit stress the cancept of the pjwer spectrum.
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where the lamt integral is to he regard(ed as a StlIjtcjr:' li•:•ri_ \k h,1 I lhe
expression (2.? .4) for 4'( ) is. lpiccd in lie• firt forniiiLa t ( .. .1) we geVt

/ ,(g) dg jA ± C- ., " >/u (2.2 5)

When this expression is used in ithe se-onii fLi inula Iof (2-2 .l), I lie inrements
of the differential are Feen to ihe Ae2 at f 7 an0 d ( "/2 at [ - f . The re-
sulting cxpressint for VIr) ageCes With the orig7.inal uce.

Slhre we desire to ise a less rigorolls, bwut. inure coux--t iici, itlhcthl of
dealing with periodic Coill)(nlelits. Ily examining the iwitigral J woff) as
giveit bv (2.2-5) we are led to write

w(J) = 2.A2 6() ± 2 8(f - o)- (2.2-6)

where 6(x) is an even unit imjAIlse function so thlLt if f > 0

jA'(x) dx = '_ I' A(x) dx = (2.2 7)

and 6(x) = 0 except at x 0 0, where it is infinite. This enables us to use
the simpler inversion formulas of section 2.1. The second of these, (2.1 6),
is immediately seen to give the correct exjprcssion for 4,(r). The first one,
(2.1-5), gives the correct expression for w(f) provided we interpret the in-
tegrals as follows:

fd cos 2-rfT dt = jb(J)
(2.2-8)

0j cos 27rfo r cos 27rfrdr = 16(f - fo)

It is not hard to show that these are in agreement with the fundamental
interpretation

e`i2vf' dt = ei2 t ' di z= ) (2.2 -9)

which in its turn follows from a formal application of the Fourier integral
formiula and

L (f)ein nl d/ = f 5() (f)e-C t dJ = 1 (2.2-10)

We must remember that fJ > 0 andf > 0 in (2.2 8) so that b(f Jo.f) ý 0
for f > 0.
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The definition (2.1-3) for w(f) g*iveq the continuowi part of the power
spectrum. In order to get the part due to the d.c. and periodic tora-
ponents, which is exemplified by the expressimo (2-2 6) for w(f) involving
tle 6 functions, we must supplement (2.1--3) by adding terms of the type

2A 26(') + 0 A) : A Wj

r -(2.2-11)

+ Limit 21S(Lo)1I'
L T--. - ' O f/ - A)

"hie correctness of this expression may be verified by calculating Sf) for
the 1(1) of this section given by (2,2 2), and actually carrying out the limiting
process.

2.3 DIscusSION oF REZSULtTS OF SECTION ONE-FOURIER SniFr-s

The fact that the spectrum of power wv(f) and the correlation function
41(r) are related by Fourier inversion formulas is closely connected wit'h
Parseval's theorems for Fourier series and integrals. In this section we shall
not use Parseval's theorems explicitly. We start with Fourier's series anti
use the concept of each component dissipating its share of energy inde-
pendently of the behavior of the other components.

Let that portion of I(t) which lies in the interval 0 < I < T be expanded
in the Fourier series

I W ag4 ( cos 2+n + k sil 2n) (2.3-1)

where
" 2 fr 2 irnt"

an J [(I cos- 7 'di

f 2 ) in2d 
(2.3-2)

b. Jo 1. (1) sill T i

Then for the interval - r < t < T - r,
= 2-, (2+n(t + r)T)

1(T + r) = o + (a,, cns + b. sin 7r (2.3-3)2 . T T

Multiplying the series for !(1) and IQ + ± ) together and integrating with
respect to I gives, after some rcdtu thin,

fLrl1)!(1:)t (+i +) b2 )CS27 (?)(.-
24(2.1-4)f. o + 21rnT1-,• ~ ~ + •.a. b') cos T' +:



where the Iast term, represents correction termsx which nmst he 'added 1nw-
cause the series (2.3 3) does not represent 1(I + Y) in the interval (7 -T T)
when r > 0, or in the interval (0, - 7) if r < 0.

If 10) were a current and if it were to flow through one ohm for the in-
terval (0, T), each component would dissipate a certain average amount
of power. The average power dissipated by the componeint of frequency
f. = ni/T cycles per second would be, from the Fourier series and elementary
principles,

_i(a2 + b',,) i•att9, n 0

2 (2.3-5)
00 watts, n = 0

The band width associated witlh the nth component is the difference in
frequency between the n + I th and nth components:

"n-+1 n 1
1 -f T . T = e cps

Hence if the average power in the band f, f + df is defined as $(f)df, the
average power in the bandf -f. , is

wfU.)+, - T)

and, from (2.3-5), this is given by

n# (2.3-6)

W(0) T- 4 n =0

When the coefficients in (2.3-4) are replaced by their expressions in terms

of u(V) we get

jIf )I(i + T)di + O 4)

TI T

T Ta o
= U'os .r d(3-7)

-PfiN!) cos 2irfrdf
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where we have assunied Tso large and w(f) of such a nature that the sumrmnw

tion may be replaced by integration.
If I remains finite, then as T-)2 a with r held fixed, the correction term

on the left becomis ncgligibly sntmll and we have, upon using the definitions

(2.1-4) for the correlation function 4,(r), the second of tie fundamental
inversion formulas (2.1- 6). The first inversion formulao may be obtained
from this at once by using Fourier's double integral for w(.

Incidentally, the relation (2.3-6) between w(f) and the coefficients a,, and
b, is in agreement with the definition (2.1-3) for w(f) as a limit involving
I S(f) 1 2. From the expre-sionz (2.3-2) for a,, and b,,, the spectrum S(f,)
given by (2.1-2) is

S (fh) T (a. - ib.)

2

Then, from (2.1-3) w(f,) is given by the limit, as T --+ -o, of

2 
22 2.7' 2 +b2)

2

and this is the expression for w, () given by (2.3-6).

2.4 DiscussioN OF RESULTS OF SE.IJON ONE--PARSEVAL'S THEOREM

The use of Parseval's theorem17 enables us to derive the results of section
2.1 more directly than the method of the preceding section. This theorem

states that

*F(I)F2(D df = G(1)(;)(-t) di (2.4-1)

where Fi, G, and F2, G, are Fourier mates related by

F.V) = f G(ie-j 2rfI di

(2.4-2)
G(t) = I fFf)." 29

It may be proved in a formal manner by replacing the F, on the left of
(2.4-1) by its expression as an integral involving G2(t). Interchanging the

t7 E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford (1937).
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order of integration and using the second of (2.4 2) to Wetlia(! F2 by (re plave

the right hand side.
We now set (;(t) and (;2(t) equal to zrrto except fo)r inleivals of lengtlh 1'.

These intervals and the corresponding valucs 4)f (; and 2;i are

G1Q) (= 1(), 0 < I < T (2.4,-3)

62(t) = I(- I + T), T -- T <t I-

From (2.4 3) it follows that F,(f) is the spectrum S(f) of 1(i) given by cqua.-
tion (2.1--2). Since 1(t1) is real it follows from the first of echtalimns. (2.4 -2)
tha9.t

s(-f) ý ,s*(f), (2.4 -4)
where the star denotes conjugate (omplex, and hence that j S(f) 1 2 is an

even function off.
'[he first of equations (2.4 2) also gives

F2' +- r)e i2,fI di

fo T (t) 1 2 I- d, 
(2.4-5 )

= S*(f)e-•2wfr

When these G's and F's are placed in (2.4-1) we oblain

I S(J) I1e 2.?,,f, j =(1)1(1 -F r) di (2.4-6)

where we have made use of the fact that (; 2(--1) is Zxro except in the inter-
val -- T < I < T - r and have assumed r > 0. If r < 0 the limits #f
integration on the right wouldI be - and 1'.

Since I S(f) 21 is an even function off we may write (2.4 6) as

I I f(1)1(1 + r) di + () ) = I T cos 27rfr df (2.4--7)

If we now define the correlation function •-(r) as the limit, as T , , of the
left hand side and define -w(f) as thle- fuiiitioin

w(f) -: Limit 215(f)1 (2.1 3)

we obtain the secoindI, (2.1 6), of the fhimumleintal ini'ersion formulas. A\s
before, the first mmv be obtained fromn l"ouiier's integrai theorem.
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In order to obtain the interpretation of w(f)df a. the average power dis-

sipated in one ohm by those comlpoiicnbt of 1(1) which lie in the 1and f,
f-+- df, we set r- = 0 in (2.4 7):

Li-mit I l2(j) 1i, f- (f) df (2.4--8)

The expression on the left is certainly the total average power which would

be dissipated in one ohm and the right hand side represents a summation

over all frequencies extending from 0 to o. It is natural therefore to in-

terjpret w(q)df as tile power due to the components in J,f + df.

The preceding sections have dealt with the power spectrum ?v(f) and corre-

lation function 41(r) of a very general type of function. It will be noted
that a knowledge of w(f) does not enable us to determine the original func-

tion. In obtaining w(f), as may be seen from the definition (2.1-3)'or from
(2.3--6), the information carried by the phase angles of the various compo-

nents of I(t) has been droplped out. In fact, as we may see from the Fourier
series representation (2.3--1) of 1(1) and from (2.3 -6), it is possible to obtain

an infinite number of different functions all of which have the same w(f),

and hence the same 4,(r). All we have to do is to assign different sets of
values to the phase angles of the various components, thereby keeping

1, + b, constant.

2.5 HARMONIC ANALYSIS FOR RANDOM FuNCrloNs

In many applications of the theory discussed in the foregoing sections

1(t) is a function of I which has a certain amount of randomness associated
with it. For example I(Q) may be a curve representing the price of wheat
over a long period of years, a component of air velocity behind a grid placed

in a wind tunnel, or, of primary interest here, a noise current.

In some mathematical work this randomness is introduced by considering
JIQ) to involve a number of parameters, and then taking the parameters to

le random variables. Thus, in the shot effect the arrival times 1 , ti, • --x
of the electrons were taken to be the parameters and each was assumed to be
uniformly distributed over an interval (0, T).

For any particular set of values of the parameters, 1(t) has a definite power
spectrum w(f) and correlation function j(r). However, now the principal
interest is not in these particular functions, but in functions which give the

average values of w(f) and 4,(r) for fixed f and r. These functions are ob-
tained by averaging w(f) and 4,(r) over the ranges of the parameters, using,

of course, the distribution functions of the parameters.
By averaging both sides of the appropriate equations in sections 2.1 and
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2.2 it is seen that our fundamental inversion formnlac (2.1--5) and (2.1- 6)
arc unchanged. Thus,

fu(f 4 fQr) cos 2,f4r dT (2.5-1)

f= j 7b(f) cos 2wfr df (2.5-2)

where the bars indicate averages taken over the parameters with f or T held
constant.

The definitions of vb and 4, ap.earing in these equations are likewise ob-
tained from (2.1-3) and (2.1-4)

L(i) = m Limit T (2.5-3)

and

-,Limit " I(j)Y(T + di (2-5-4)

'Tlie values of I anti r are held fixed while averaging over the parameters.
In (2.5--3) S(f) is regarded as a function of the parameters obtained from
1(1) by

S-f) l(I)e-2"W di (2.1-2)

Similar expressions may be obtained for the average power spectrum for
d.c. and periodic components. All we need to do is to average the ex-
pression (2.2--1i)

Sometimes the average value of the product 1(1)1(1 + r) in the definition
(2.5 4) of 4'(r) is independent of the lime T. This enables us to perform
the integration at once and obtain

)= (t)It-+r) (2.5-5)

TIhis introduces a considerable simplification and it al'Fears that the simplest
method of computing 7,'f) for an I(/) of this sort is first to cumpute ,(r), and
then use the inversion formula (2.5-1).

2.6 F1RsT ExmAPLE-TilE SIIOT EFFE-rCT

We first comnpute the average on the right of (2.5-5). By using the
method of averaging emI loyed many times in part I, we have

J(I)l(t+r) = + p(K) 141)15(1 + r) (2.6-1)
C-O
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where p(K) i:; the probability of exactly K clectroin arriving in tile inter-
val (0, 7),

p (K T)) e-r (1.1-3)

and
K

IN (t) F •, F(I - tI (.3I
k-l

Multiplying IJt) and JxQ + r) together and averaging tl, 12, -t

over their rangts gives
K Akf7 di,j fT dit

IR(i)IX( + r) E J .J 4 FQ - tJF(t + - )L M -1 " ... .T

This is similar to the expression for 1.(i) which was used in section 1.3 to
prove Campbell's theorem and may lie treated in much the same way.
Thus, if I and I + r lie between A and T - A, the expression above becomes

K O Ft)F(1 + -) di + K(K - 1) [LGo FQ) dti
T f ,. 7 -"2 [ o

When this is placed in (2.6 1) and the summation performed we obtain
an expression independent of 7'. Conscquently we may use (2.5-5) and get

W = v f F(I)F( + r) di + J•2) (2.6-2)

where we have used the expression for the average current

IQt) '11 F(1) dt (1.3-4)

In order to compute fi(f) frem &(r) it is convenient to make use (if the
fact that 0(4t) is always an even function of r and hence (2.5 -1) may also
be written as

7,(f) = 2 j 4(r) c-s 2rfr dr (2.6-3)

'llien

fv(.f) = 2v dt F(1) dr F(t + r) cos 2irfr

--2 1() cos 2rfr dr
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2p Real Part of i di F()C-'' di' l,'(t')e•'2'"

+ 21 f
2v I s(f) I' 4- 21(t) 2 (f) (2.6-4)

In going from the first equation to the second we have w-ritten t' 2 I + -•
and have considered cos 21rfr to he Ihe real part of the corresponding ex-
]It r111t i 1. In L'Oing from the secolnI eq(ualion to the third we have set

V(f) J- F()e ?"'f dIt (2.6-5)

and have tised

0e i21rfid f (2.2-9)

rhe term in wv(f) involving J(f) represents the average power which would
be dissipated by the d.c. comljonent of 1(1) in flowing through one ohm.
It is in agreement with the concept that the average power in the band
0 < f < e, e > 0 but very small, is

(J) d t 21( j) " , 6( ) 4 (2.6-6 )

The expression (2.6-4) for o(.f) may alsol be obtained frurm the definition
(2.5-3) for ib(f)ilus the additional term due to the d.c. component ob-
tained by averaging the expjressions (2.2 11). We leave this as an exercise
for the reader. lie will findl it interesting to study the steps in Carson's IN

paper leading up to equation (8). Carson's R(cw) is related to our fb(f) by

r,(J) = 2,rR(w)

and his f(iw) is equal to our s(f).
Integrating both sides of (2.6 4) with respect toJ from (I to andt using

12 f g'(J) df

gives the result

2 - I 24 Js(f) Viid (2.6-7)

Sh0oc. cit.
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"i'i.i may be obtaJ1ai nd inTmediatly from Cilmnplwll'. theorem by applying
1'arscval's; ticorcum.

As an vxamlc of ilhe uwe of thces;, fiormulas we derive fhe power spectrum
(if the voltage acr.ss -1 rwfistati-e R when a current consisting of a great num-
her (if vry short Iiulses per .,c-ond flows through R. Let F(I -4) hbe tile
voltage produced by the pulse occurring at time t1. Then

where p(t) is thc current in 1c pIuise. We cunfine our interest to relatively
low frequencies such tliat we may make the approximation

s(f) f 0 Rk,(t)e -2" dl

= R f (t) di = Rq

where q is the charge carried through the resistance by one pulse. From
(2.6 4) it follows that for these low frequencies the continuous portion of
the power spectrum for the voltage is constant and equal to

?ijf) = 2,R 2 q 2 .-- 27R2q (2.6-8)

where v = vq is the average current flowing through R. This result is often
used in connection with the shot effect in diodes.

In the study of the shot effect it was assumed that the probability of an
event (electron arriving at the anode) happening in dit was Ydt where P is the
expected number of events per second. This probability is independent of
the time t. Sometimes we wish to introduce dependency on time."a As an
example, consider a long interval extending from 0 to T. Let the prob-
ability of an event happening in t, t + dit be Kp(t)dt where 9 is the average
number (f events during T and p(t) is a given function of I such that

f p(l) di = I

For the shot effect p(t) "- 1/T.
What is the probability that exactly K events happen in T? As in the

case of the shot effect, section 1.1, we may divide (0, T) into N intervals
each of length At so that NIt 7'. The probability of no event happening
ill tile first At is

I0 A careful disci4ssiun of this subject is given by llurwitz and Kac in "Statistical
Analysis of Certain Typcs of Random Functions." I understand that this paper will
soon appear in the Annals of Math. Statistics.
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3li prodlct of N such pobahilit its is, as, N - , -At ;

e [ ... f p(1) r"

Ihis is the prolbailily hta exactly 0 event" Iri;tpl-, n T. III llt ý;Ifnc v. ay
we are led to the exj.ressit n

e (2.6 -0)

for tle probah"ity tha! exactly K eve.!,,i h'aj" i,, T.

When we consider many in terv\als (0, T') Wc ,F)l)it ;ii many values of A and

also many valties of I measured I seconds from Ilihelginnig oi each interval.
These valucs of I definei Ilic distrihution ,if I at time t. By procceding as in
section 1.4 we find that the probability densily of I is

P(1, t) = 7 'sfJ

P )=2w 1i Arf d . )1-idIKf pwwx)(c"f r) 1) d]

The corresomnding avera;ge and variulntc is

7 of p(x)F(t x) dx

(1 -- -i)2 = R p(x)F'(t - x) dx (26- 10)

If S(.) is given by (2.1 2) and s(f) by (2.6 5) (assuming the duration of

F(1) uhrt in comlra rison with T) the LvcI.LgC vablue of I S(f) I may 1Ie oh-
taincd by imlting (1.3 1) in (2.1 2) it) get

S,(S) - 4J) e - 2r"Jt"
1

Expressing Sx(.f) S*K(f), where the star deno(tes t(onjugalt complCx, as a

double sum and averaging over the /'Ws, u1ng, p(l), minl ihen aveiagiig over
the K's gives

) K if p(x)e- dx (2.6 11)

This may he used to comrpute the power Fi:ectrum from (2.5 3) lv;(idCd
p(x.) is not putinl ic. If p(x) is jicrilmic then the method of seclii 2.2

should be used at the llarmibilci ftcquw'u icts. If the fluctuations of p/() arc
slow in comjn'arison wifli the Bu I tnali()Is of F(t) Ilie seton1d terin withini thc
brackels (If (2.6 11) may generally he ncglccled .in c there are nio valhucs if



f which make Iboth it and s(f) large at the sarmc time. (hi the other harit;,
if both pt) and MI(t) fluctuate at about the sanme rate this terra must be
considered.

2.7 SECOND ]XAM•IE. RANDOM lYEIIEGRAPII SIGNAL'6

Let [(t) be equal to either a or -- a so that it is of the form of a flat top
wave. Let the intervals betwecn changes of sign, i.e. the lengths of the
tops and bottoms, be distriluted exponentially. We are led to this dis-
tribution by assuming that, if on the average there are p changes of sign per

,,d,0 he prolililty ,F a. ,h:!ge .of sign. in 1, + -1- d? is Pd! and is independ-
ent of what happens outside the interval 1, t + di. From the same sort of
reasoning as employed iii section 1.1 for the shot effect we see that the
probability of obtaining exactly K changes of sign in the interval (0, T) is

p(K)=(T) K e- (2.7-1)

We consider the average value of the product r(1)1(t + r). This product
is a2 if the two I's are of the same sign and is - a3 if they are of opposite sign.
In the first case there are an even number, including zero, of changes of sign
in the interval (/, 1 + ), and in the second case there are an odd number of
changes of sign. Thus

Average value of I(t)I(t + r) (2.7-2)

a2 X Ftroiiability of an even number of
changes of sign in t, I + r

2

-- a X probability of an odd number of
changes of sign in 1, 1 + r

The length of the interval under consideration is I t + r - t r I r seconds.
Since, by assumptioni, the probability of a change of sign in an elementary
interval of length At is independent of what happens outside that interval,
it follows that the same is true of any interval irrespective of when it starts.
Hence the probaibilities in (2.7 -2) are indelenldent of t and may be obtained
from (2.7 1) by setting T = ITr . Then (2.7 -2) becomes, assuming r > 0
for the moment,

I(t)I(t + B =- a2 [p(0) + p(2) + p(4) + --- 1
- a2jp(t) + p(3) + p(5) + ... ]

1 2!•--a e 7[ 1 1-+2! . .

a2 e-- 2ta'r (2.7-3)

10 Koifick, cited in Section 2 2.
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~roit (2.5-5), this gives the correlation funclion for T(t)

2R) = a2e-2PITI (2.7-4)

The corresponding power spectrum is, from (2.5-1),

( U4a2 f -2M cos 2rfr d4

2a2 p 
(2.7-5)

+22 +t

Correlation functions and power spectra of this type occur quite fre-

quently. In particular, they are of use in the study of turbulence in hydro-
dynamics. We may also obtain them from our shot effect expressions if we
disregard the d.c. component. All we have to do is te assume that the
effect F(1) of an electron arriving at the anode at time I = 0 is zero for
t < 0, and that F(N) decays exponentially with time after jumping to its

maximum value at I = 0. This may be verified by substituting the value

F(1) = 2a e-2p, t > 0 (2.7-6)

for F(t) in the expressions (2.6-2) and (2.6-4) (after using 2.6-5) for the
correlation function and energy spectrum of the shot effect.

The power spectrum of the current flowing through an inductance and a
resistance in series in response to a very wide band thermal noise voltage is

also of the form (2.7-5).
Incidentally, this gives us an example of two quite different ](1)'s, one a

flat top wave and the other a shot effect current, which have the same corre-
lation functions and power spectra, aside from the d.c. component.

There is another type of random telegraph signal which is interesting to

analyze. The time scale is divided into intervals of equal length h. In an
interval selected at random the value of 1(t) is independent of the values in
the other intervals, and is equally likely to be ±a or -a. We could con-
struct such a wave by flipping a penny. If heads turned up we would set

f(t) = a in 0 < I < It. If tails were obtained we would set 1(1) = -a in
this interval. Flipping again would give either ±a or -a for the second
interval I < I < 2h, and so on. This gives us one wave. A great many

waves may be constructed in this way and we denote averages over these
waves, with I held constant, by bars.

We ask for the average value of 1(t)l(1 + r), assuming r > 0. First
we note that if r > A the currents correspond to different intervals for all

45



values of 1. Since the values iu these intervals are independent we have

t)1(t -1- B) 4t) 1 -[- i):= 0

for all values of t when T > h.
To obtain lhv, average when T < h we consider I to lie in the first interval

0 < I < h. Since all the intervals are the same frcmn a statistical poiunt
of view we lose no generality in doing this. If I -± r < h, i.e., t < Ih
both currents lie in the first interval and

a• t"

I(, t "+ =) a

If t > h - r the current [(( + r) corresponds to the second interval and
hence the average value is zero.

We now return to (2.5-4). The integral there extends from 0 to T.
When T > h, the integrand is zero and hence

ý() = 0, r > A (2.7-7)

When r < h, our investigation of the interval 0 < I < I enables us to write
down the portion of the integral extending from 0 to h:

I(1)1(i + ) dt = j a di + 0 di

= a2 k- r)

Over the interval of integration (0, T) we have T/h such intervals each
contributing the same amount. Hence, from (2.5-4),

a2'T
j(r) = Limit (hs - r)

(2.7-8)
=a(1 -- 1 , 0 r<

The power spectrum of this type of telegraph wave is thus

(f) 4= fa ( -)t cos2rfTdr

= 2h 
(2.7-9)

2htasirh "

This is seen to have the same general behavior as *(f) for the first type
of telegraph signal given by (2.7-5), when we relate the average number,
)A, of changes of sign per second to the interval length h by phk 1.
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2.8 REPRESENTATION O Nomsx (:IJRHNT

In section 1.8 the Fourier series representation of the !;hot effect, cuirent

was discussed. This suggestq the representation*
'I

1(t) =L• (a, cos w,, t + b,% sin ,j,, t) (2.8)
fnl-

where

2 2rf, f,. ,Af (2.8-2)

a, and b. are taken to be independent random variables which are distributed
normally about zero with the standard deviation vw(fJ)Af. w(f) is the
power spectrum of the noise current, i.e., w(f) df is the average power which
would be dissipated by those components of 1(/) which lie in the frequency
range f, + ± df if they were to flow through a resistance of one ohm.

The expression for the standard deviation of a,, and b, is obtained when
we notice that Af is the width of the frequency band associated with the nth
component. Hence ti(f,2Af is the average energy which would be dissi-
pated if the current

a. cos wj + b,, sin wo.1

were to flow through a resistance of one ohm, this average being taken over
all possible values of a,, and b, . Thus

w(,)Af = aftcos2 w. + 2a,,b,,cos wsinw4 + bnsiwt = an =-- b,, (2.8--3)

The last two steps follow from the independence of a,, and b, and the identity
of their distributions. It will be observed that tJ(f), as uFed with the repre-
sentation (2.8 -1), is the same sort of average as was denoted in section 2.5
by o&(f). However, 7v(f) is often given to us in order to specify the spectrum
of a given noise.

For example, supjpose we are interested in the output of a certain filter
when a source of thermal noise is applied to the input. Let A(f) lie the
absolute value of the ratio of the output current to the input current wlen a

steady sinusoidal voltage of frequency f is applied to the input. Ilien

w(J) = cA'f(D (2.8-4)

A. mentioned in section 1.7 this sort of represetationf was used by Einstein and
htopf for radiation. Shottky (1918) used (2.8-1), apparently without explicitly taking
the coefficients to he normially distributed. Nyquist (1932) derived the normal distribu-
tion from the shot etlcct.
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If It" is the averaglle dissipated in one ohm by 1(t),

IV Unimit l. J (t) dt f0wUf) df

S0f 10 (2.8-))

foc AVf(iJ

which is an equation io determine c when H' and A (f) are known.
In usingl the repre•Mn!attio (2.8t I" - -at propertiest

of 1(1) we first find the corresponding statistical properties (of the .unmmation
on the right when the a's and b's are regarded as random variables distrib-
uted as mentioned above and I is regarded as fixed. Ih general, the time
I disappears in this procedure just as it did in (2.8-3). We then let N ---+ 0
and Af---+ 0 so that the summations may be replaced by integrations. Fi-
nally, the frequency range is extended to cover all frequencies from 0 to -0.

The usual way of looking at the representation (2.8 1) is to suppose that
we have an oscillogram of 1(t) extending from t = 0 to I =- . Th1is oscil-

logram may be cut up into strips of length 1'. A Fourier analysis of !(9)
for each strip will give a set of coefficients. These coefficients will vary
from strip to strip. Our representation (TAJ = 1) assumes that this varia-

tion is governed by a normal distribution. Our process for finding sta-
tistical properties by regarding the a's and b's as random variables while t
is kept fixed corresponds to examining the noise current at a great many
instants. Corresponding to each strip there is an instant, and this instant
occurs at t (this is the I in (2.8-1)) seconds from the beginning of the strip.
This is somewhat like examining the noise current at a great number of
instants selected at random.

Although (2.8-1) is the representation which is suggested by the shot
effect and similar phenomena, it is not the only representation, nor is it
always the most convenient. Another representation which leads to the
same results when the limits are taken islo

N -

I(t) = c• cos (. It - ,'o) (2.8-6)

where VL , i2, •p • are angles distributed at random over the range (0, 2,-)
and

CIL = [2w(fJ,)fAJ] 2 , w, = 21rf,, f" = nAf (2.8-7)

10 This reresentation has often been used by W. R. Bennett in unpublished memoranda
written in the 1930's.
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In this representation 1(I) is regarded as the sum of a number of sinus-idal
co)mp~onents with fixed a11114ituldes but, V11n114-11 ))ha:. anleles.

That the two different reprceentation; (2.8 1) and (2.8 6) of I([) lead
to the same statistical properties is a conisequence of the fact that they are
always used in such a way that the "central limit theorem t" may be used
in loth cases.

This theorem states that under certain general conditimis, the distribu-
tion of the sum of N randem vectors approaches a normal law (it may be
normal in several dimensions") as N - -o. In fact from this theorem it
appears that a representation such as

N

I(1) = >JN (a,, cos w.t + b,, sin wo,,t) (2.8-6)
n-1

where a,, and b, are independent randomn variables which take only the values
+ Iw,(f")AfJ', the probability of each value being 1, will lead in the limit
to the same statistical properties of 1(t) as do (2.8 1) and (2.8 6).

2.') 'ill.: NoRMAL DISTRIBUTION IN STI:v:RAL. VARIAnIF.51o

'Consider a random vector r in K dimnensions. The distribution of this
vector may be specified by staling the distribution (if the K components,

X1t, .X2, X- , of r. r is said to be normally distributed when the prob-
ability density function of the x's is of the form

(21r) n A -" exp i-2x'M'xl (2.9-1)

where the exponent is a quadratic form in the x's. The square matrix M
is composed of the second moments of the x's.

[PII P12 AIR]
Al - • (2.9-2)

where the second moments are defined by

2
fill = -T1 JU X -- IX2, etc. (2.9-3)

lM I represents the determinant of M and x' is the row matrix

X' ==- I-VI, -2, -... xK] (2.9-4)

x is the column mnatrix obtained by transposing x'.

* See nectiuan 2.1(1.
•* Ste section 2.9.
201. 1Cram6r, "'Ranulon Variables anld UrouIahilitv I )istrilmtions." Chajp. X ., {ambridge

"Tlratt No. 36 (1937).
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Thie exponent in the expression (2.9 1) for the probability density may
be written out by using

K K

,-1 ..

where M,8 is the cofactor of it,. in M.
Sometimes there are linear relations between the x's so that the random

vector r is restricted to a space of less than K dimensions. In this case the
appropriate form for the density function may be obtained by considering
a sequence of K-dimensional distribuLiIS wItiLh approach the one being
investigated.

If r, and r2 are two normally distributed random vectors their sum r1 + r2

is also normally distributed. It follows that the sum of any number of
normally distributed random vectors is normally distributed.

The characteristic function of the normal distribution is

ave. etiir+1ia4+'' rx = exp -- P Ara ZrZ, (2.9-6)

2.10 CENTRAL LIMIT TaropmM

The central limit theorem in probability states that the distribution of the
sum of N independent random vectors rT + r2 +- + -- + rv approaches a
normal law as N -- ý c when the distributions of rT, r1 , --- rg satisfy certain
general conditions.

As an example we take the case in which r, , r2 , are two-dimensional
vectors", the components of r. being x. and y,. Without loss of generality
we assume that

1"n = 0, 0•= .

The components of the resultant vector are

X - X, + X2 + .. + X•
(2.10-1)

Y - y, + y9 + ""+ y,,

and, since ri, , are independent vectors, the second moments of the
resultant are ,:1 x' 2 + 2, +..+

(2021422 = y2 = .y + y1 + -- + y2A (2.10-2)

A x 1 r Y y ' l-:-y ± -.- + XxV)p.

,Incidentally, von Laue (see references in section 1.7) used this theorem in dis:ussing
the normal distribution of the coefficients in a Fourier scrie3 used to represent black-body
radiation, lie ascrihed it to Markoff.

11 This case is discussed by J. V. Uspensky, "Introduction to Mathematical Problabil-
ity", McGraw-Hill '(1937) Chap. XV.
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Apparently there are several typecs (if coildittoiu; which are ,tuffiti-II Ito

ensure that the dim riniltiim of thec resultin apiiroachc. a n •n Il~i iw. (hie
suflicient condition is that 2'

N
11/2 j'v-- .n I id -- j 0

N (2.10 -3)

-8/2 \-P22 L. I 3 -n 0
n-i

The central limit theorem tells us that the distribution of Ihe random
voector (X, Y) approaches a normal law as N ---, ,. The second momnents
of this distribution are given by (2.10 2). When we know the second mno-
ments of a normal distribution we may write down the probability density
function at once. Thus from section 2.9

All. J112P22 - P12

M =- [A 12 , M -1 V I = M I I L32 11111

bilsf biA22 -- lli2 111

x = [Ix, Y]
X'M-_'x I Al V-'(u2X2 - 2p,2 XY + pU11 y2)

The probability density is therefore
(,Al. 22 1 --ex21X] (2.10-3)

I. - 422um - Jun)

Incidentally, the second momenits are related to the standard deviations
art, 0, of X, Y and to the correlation coefficient r of X and Y by

2 2
/All ý-- 01 , /24 .= C2 A1P = T0'LaO2 (2.10-4)

and the iprobability density takes the standard form

(1 r) 112 X2 V l y\S[ -F(" ':/
2 -- 2 1i 421 (2.10-5)2rarto el2 -2(1 -- r) \( a2 O 21.

21 This is used Iby Uspeu.ky, Ioc. cit. Another rtnilnion analogous to the L.iideberg

condition is given hy (?raner,' loc. cit.
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IPAI&I' Ill

STATISTICALl. imWli~ii IK.S M`L RAN I )( I NOISIK (' RIZENI'S

,40 IV N D-CII4)(li'N

lit this ntitm we tv-' dit' l 1rr 'st'ntii l ol f lilt' ioISt' cu-ilrcIuts givnl III

Seclititl ?.X totIl'icI bIIICV sI ast Iical I ol'I teic ItS f M.1). 'Ilii' first ,IN se-Cu

tiills ai C unwcrlfHi IWitli lilt' jlrtilill~i iI' istribIioltn 14f1 MI' ) aitt oif it,; zuros
.111cl maxima. Sci 1lins 3.7 .-Ind 3.S rec;ir( ic'iicul wilh i t(e statistical prip-
'irties of the e.1Nvckq n' of I(/) Flit4 l-Iaio'. ot f ii tegra is ii ivol ving 1I .'

aret' ItssII ,cf-lioll)1 3,9). 'T~ l4)EII pr bi vty lisir uliutionl (f a Sine watve

plus a iion' uiiirt-i it Is givel 111i 3.101 an! ;it 3.11 anl~l tet'rnat ivv met Itlo' ofi
derivin'lg ht'l otu ¾~f JPt i Ill is Tuit'uit cl -- if ,i~ I'rIll :1 ltiilit'tk has pointed
outR that I tliltIt of Ow[l ta ttrial ill I Ils P art Is clEost'lv ttlillctICI Witlli the
t henry i-4 Mark off pjro'rs.,es. Also S. ( ham lrase'kha r has writ ten a reviewv
of a Class of phy'sit ;oI iirtulleius vlilt It Is rt'latctll, ill a genwr~tI way, to thii,

ptesenlt sult'iic-_:

3.1 Tur; I )mimrninrmN ouI- rmiu: Noisi. ( IJRP ENT 2 3

Inl section IA It has beenI shlownl that the (hstribl~lti(JHl of a stint difect
curre'nt :tj qwtiachs a, normal law wia Ill( exjwe-vte numlber (if events pier
seConId, v, increases wit bunt lintil

In line with the spiri t of I his Part. Part III1, we shall use the representati ii)

1(1) ~ 0 > (, ct's w./ +- b,, Sinll ) 28i

to show that I(1) i'S tistrihitlet! ;ictortling to a normal law. This is obltainedl
att (111C-C When thle put wediite tatlitinet inl sectitonI 2.8 is followed. Sinl(-e a,,
anti b. are listri I ua'd nor ma!lyv, so art' u,, U415 w,, alit b,, sinl oj When I is
regardled ais fixet . MU) is thinsiiqthe sum of 2NV indtewntlent normal variates
ando c(-tseqllenll is itself clistrilm tedI normally.

uwtoha.ý'zt itI':Ptst h%-sws an'I As? n ,n.my, kr.;x (If Aw. )Phv. Vol. 1F. In.
1 M9' 0191W

28 An il inens? jog dl~ u'sion tat thisbh ajeut by N'. 1). L andon anti K.- A. Norton is given1
iII the I R.1.. J'riu. -if) {Spt P) 1,21 pp .25 4129).
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Tile average value of I(t) as given by (2.9 1) is zero since 1, , 0:

The mcan square value of I(:) is

N12-) > (a ,,CO t -I- ¼• .jin2 w,. t)
I~'II

N

-- A) wfAf (3.1-2)

w(J ) df C)-0

In writing down (3.1 2) we have made ue owf the fact that ll the a's anl b's
are independcent and consequently the average of any cross p1rtlut(t is zero.
We have also made use of

2 2a, b,, = 7V(fAf, f, = nAf, ,,,-- f

which were given in 2.Y. 4,(r) is the correlation function of 1(t) awl is
related to iv(f) by

4, ( T4r) = j, w(f) cos 2trfr df (2.1-4)

as is exp~lained in section 2.1. In this part we shall write the argument of
4'(r) as a subscript in order to save space.

Since we know that 1(t) is normal and since wt also know that its average
is zero and its mean square value is to .we may write down its prolalltv
nensity function at once. Thus, the probability of 1(t) being in thin
range 1, f +dl is

dl g (.L3

"Thli is the probal)Ilily cit minding the current between [ andid f -14 ,! m a
tim.. selet Lei at random. tknother way of saying the sant, thing is to staic
that (3.1 -3) is tlfe traction of time ilie current sll,,(k in Illh ranigc 1, I -+- dl.

In many cases it is more coriVenlient tio use hlie replrcct'ntatioh (2.8. 01

t~t = L•C,, cos. ((-)" t - ,PJ,, C'.' U-. 2,( ,)6(2 •)
n_1

in wih i 'v,-... are ndnlichn(enht randohm pdha.c at ig1c!h' ht jr[hrl Pi

deduce the nrm:dl distributium [tmn Ihi,, rrvprescitcttm \\n . first ,lr,,cr'vi

53



that (2.-) expre•-ses 1(1) as the suin of a large nixulwer of independent ran-
dom varialbles

1(1) --- X[ X2 +- -+ Xpr

vs - c o Cs (wIet - .)

and hencte that as N -,-, 1(1) beconies distrib)ited a-cor(Iing to a normal
law. in orwder to make Ihr limiting ir)FtCss definite we first choose N and
Afsuch that NjAJ = F where

f ~d < cf wJoP,7( f ) ,t/< E f ?V(f ) (if

where e is some arbitrarily chosen small positive quantity. We now let
N -- oc and Af - 0 in such a way that NAf remains equal to P. Then

N

A = 4 + 4 ± + x% = > 2w(f4).f cos2 (cast - 'P.)
1

N (3.1-4)

> w(f44 -4f w(f) df

B = IxT1 + + [xY4 = 13 (2w{f,,)f)'2 fcos (w.t -- •,n)I
I

< 4 (Af)" 112' [w(f )]3 df

where the bars denote averages with respect to the p's, t being held constant.
If we assume that the integrals are proper, the ratio BA-3 312 _ 0 as N---+ 0,
and consequently the central limit theorem* may be used if w(f) = 0 for
f > F. Since we may make F as large as we please by choosing f small
enough, we may cover as large a frequency range as we wish. For this
reason we write oo in place of F.

Now that the central limit theorem has tohl us that the distribution of
1(1), as given by (2.8-6), approaches a normal law, there remains only the
J)rol)lem of finding the average aMd the standard deviation:

j = >2 C. Cos (w,. - ',.) = 0

N,'

Pt,= >7. c• L,• 2 (,.,,t -- ,) (3.1-5)

-- f w(f) df= 4'o

Section 2.10.
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Thids gives tie prohability density (3.1--3). 1 [ence the two representations
lead to the same result ii this case. Evidently, I hey will continiue to lead
to identical results as long as the central limit theorem may be used. In the
future use of the representation (2.8 6) we shall merely assume that the

central limit theorem may he applied to show that a normal distribution

is apiproached. We shall omit the work correslmndijig to equations (3.1- 4).

The characteristic function for the distribution of 1(1) is

ave. eiriz~f) = exp - /0 i(.1-6)

3.2 1T)u DISTRIBUTION OF I (i) AND I (t + r)

We require the two dimensional distribution in which the first variable
is the noise current 1(t) and the second variable is its value 1(0 + r) at some
later time T. It turns out that this distribution is normal24 , as we might
expect from the analogy with section 3.1. The second moments of this
distribution are

P =1 P (1) - 410 = LO w(f) df

P22 4'o (3.2-1)

Ann = I(0I(t + r)

The expression for pi2 is in line with our definition (2.1-4) for the correla-
lion function:

L--.*, U T I(t)T(i + r) di (2.1-4)

In order to get the distribution from the representation (2.8- 6) we write

V

11 = t(t) = ~� C cos (cot - 9.)
1

12 + ± ) Zc cos ((oon - -- )

24 It seems that the first person to obtain this distribution in connection with noise was

H. Thiede, Idec. Nachr. 7ek. 13 (1936,. 84 95.
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F'romi the central nt.ui theorlem if frw twwo dirnension: it followý- thati/ and J1

are distributed normally. As in (3.1)

N

loll - e-..- W(J) dJ :: I-,

,te 0 (3.1-2)
N

P32. = I1t4 > 2_, c' ave. Lcos (W,1 t -. p,') cos (w t - ¢,, + wor)j

Now the (jLualtity wdilii the ,aatr-ntlicsis i-q

cos 2 (wOet - e,.)s COSr -- COs (Wj - y,) sin (W,,t 1P.) sin wnr

and when we take the average with respect to p, the second term drops
out, giving

N

A132 Cn 4 COS W, rT w(f) cos 27rfr df = , (3.2-3)
1 ,tO

where we have used wo. = 2wf, and the relation (2.1 6) between w(f) and #,(r).
The probalbility density function for 11 and 12 may be stated. From the

discussion of the normal law in 2.9) it is
2. 2 ] .exnK--' 'l -_o + 241,,1.2

0 02(42 (3.2-4)

For a band pass filter whose range extends fromf. tojb we have

f"A
41, wo cos 27fT If

sin W r - sin cor(2=w0-2o .. (3.2-5)

20( 2,rr

_ 20 sin lr7(b -/f) cos lrr(fb + A)
irr

V0 = w(fA -fe)
where wo is the constant value of w(f) in the pass hand and

J• = 2'rf 6 (3.2-6)

WO = 2wf,

According to our formula (3.2-4), 1, and 12 are independent when V/,
is zero. For the r's which make 4', zero, a knowledge of 1, does not add to
our knowledge of 1 2 . For example, suppose we have a narrow filter. Tlhen

4,, = 0 when . = [2(fi +tf.)f"

4, is nearly - 41o when r = [fb + f,]-j
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For the tirst value of i, all wie know is that LA is distributed about )zero with
12 • •'0. For the second value of r 12 is likely to he near --11 . 'Tiis is
in line with Iihe idea that the noise current through a .•arrow filter wbhaves
like a sine wave of frequency 2(fb -I.Jf) (ail(, incidentally, Whose amplitude
fluctuates with an irregular frequency of the order of 4(fJ -A- ]',)). T[lhe lust
value of r corresponds to a quarter-period of such a wave andl the second
value to a half-period. By drawing a sine wave and looking at points sepa
rated by quarter and half periods, the reader will see how the ideas agree.

The characteristic function for the distribution of I, and 12 is

ave. e"'IA1 •' 11 -'- ex) [-& (,42 + V?) 2 (3.2-7)

The three dimensional distribution in which

1, = 1(t)

18 = 1( + 1 + T2O

where 71 and 72 are given and I is chosen at random is, as we might expect,
normal in three dimensions. The moments, from which the distribution
may be obtained by the method of Section 2.9, are

pig = 0I,

PA8 0 12

m, #(r, + O) = 41,,+,,

The characteristic function for I1, 12, 13 is

ave. e iux 1"!-fiVltE uIs8$ 5

Sexp-(z - - 2 z2  - (3.2-8)

3.3 E CxpTECTUD NUMBER or ZEROS PER SFCOND

We shall use the following result. Let y be given by

y = F(a, , a-2 ,"" at, ; x), (3.3-1)

and let the a's be random variables. For a given set of a's, this equation
gives a curve of y versus x. Since the a's are random variahles we shall call
this curve a random curve. Let us select a short interval x, , x, + dx,
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and then draw a haiht of a's. Thie probability that Mle curve (btaitCil by
puttiug these (I•s i1 (3.3 1) will have a zero in x, +x 4- dx is

dx J v I p(O, n; xi) d1j (3.3-2)

and the expected numbler of zeros in the interval (xi , .Aj) is2" f uf I f . I P(O, I-; X) (i (3.3-3)

In these expressions p(- , % t; x) is the probability density function for the
variables

F(a,, . a; x)

OF (3.3-4)

Ox

Since the a's are random variables so are t and %/, and their distribution
will contain x as a parameter. This is indicated by the notation p(, nj; x).

These results may be proved in much the same manner as are similar
results for the distribution of the maxima of a random curve. This niethod
of proof suffers from the restriction thUt the a's are required to be bounded.25

Results equivalent to (3.3 2) and (3.3-3) have keen obtained indejlendently
by M. Kac. His method of proof has the advatage of not requiring the
a's to be bounded.

Here we shall sketch the derivation of a closely related result: The prob-
ability that y will pass through zero in xi , xi + dx with positive slope is

dxj ,p(O, n; x,) d, (3.3-5)

We choose dx so !.mall that the portions of all but a negligible fraction
of the possible random curves lying in the strip (x , x, + dx) may be re-
garded as straight lines. If y =-- at x, and passes through zero for x, < x <

x, + dx, its intercept on y = 0 is x, - where qt is the slope. Thus t anti 17

must be of opposite sign and

x1 < x1 - < x, + dx
71

5S. 0. Rice, Amer. Jour. Math. Vol. 61, pp. 409-416 (1939). However, L.A. MacColl
has pointed out to me that a set of sufficient conditions for (3.3-5) to hold is: (a) P($, 1; x)
is continuous with respect to (j, q) throughout the li plane; and (b) that the integral

I0 p(a,% ,; x dj

converges uniformly with respect to a in some interval -a, < a < aa, where a, and a2
are potitive. These conditions are satisfied in all the applicii-ions we shall make use of
(3.3-5).

"20 M. Kac, BidO. Amer. Math. S". Vol. 49, pp. 314-320 (1943).
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Accitmrling to the statement of our lr)le'lt, we arM interested only in positive
values of q, and we therefore write our iuecjualily as

For a given random curve i.e. for a given set of a's t and q have the valuts
giveii by

6-: F(a1, ... aN ;xi)

If these values of t and i? satisfy our inequality, the curve goes through zero

in x,, x, + dx. The probability of this happening is"

p d f dEP(p, q;x.) f LO - (- dx)1p(0, ,; xt) d-.

where we have made use of the fact that dx is so very small that 4 is effc(-
tively zero. The last expression is the same as (3.3 5).

In the same way it may be shown that the probability of y passing through
zero in x, , x, + dx with a negative slope is

-dx f tip(O, %; x,) dq1  (3.3-6)

Expression (3.3- 2) is obtained by adding (3.3-5) and (3.3-6).
We are now ready to apply our formulas. We let t, 1(1) and 9,. play the

roles of x, y, and a,, respectively, antl use
N

l(1) = F c. cos (,i.t - 4,), c, = 2w(f)Af (2.8-6)
n-I

27 MacColl ha& remarked that the step front the double integral on the left h•nd side
of this equation to the final result (3.3-5) may be made as follows:
It is easily seen that the probability density we are seeking is

of- f tfo %,; x0 d$]

Proceeding formally, without regard to conditions validating the analytical operations
(for such conditions see the footnote on page 52), we have

T f d, jf p(c, ,; x) dt f ,p(-,wAx, ,; x) d,

and hence the required probability density is
Q0(, v; x) d4
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"Tlhe flil :;1') v; ,) find thle jrlmobhIility denusity function of flie two I'Mahidili
variablels

N

N (3.3--7)
t'(t,) ' C,,W, Sil (tIt -GO,ý)

where 11l1 irillm. (lCIif diftercnIiation with respwct 1. Fronn section 2.10

,9 n ".>i ctw,, s2 (w,,, , -- €,,,)
Ap

= _ (27rf.)2 7v(f,,)Af

-- 2' f2 'w(f) d o-

70

The expression for PU22 ;rist.s from (2.1- 6) I)y difterentiation. In ihis expres-
sion 4,•' denote-s the second derivative of 4,(T) with respect to r at r .V:

4I/H(r) = -4v2 ff 2wf) -,os 27rfr df (3.3-8)

Hence the prt)l)ahilily density is

%- q, - [1 - , 241' (3.p3-e)+

where 4' is negative. It will be observed that the expression on the right
is independent of t. Hlence the probability of having a zero in 1t , t2 + dr,

dt f u- eq,( d d[ o)J (3.3-10)

which follows from (3.3 3), is independent of t.
The (expe(:ted numnler of zeros per second, which may lie obtained from

(3.3-31 by integrating (,3.3 10) over an interval of one Second, is

1 /1 12 I 2 ) dfl1

[ L 7 2o) J (3.3-11)

[0

60



For ai• ifleal Niti pass filler wh.ose M':; bltrd exten!,'. from'i ff, to f/, the
explected mlitn wer (of zeros pcr sUE Iiltin IS

2 [I ft. (3 3 12)

When f, is zero this hte nems 1.155 fl, and whenl, -is vely n1eally uqual 1o

;fbi lieI fb +[ fa
In a recent paper M. Kau" haNs given a result whhidi, afteyr a sl•ght I enm-

ralization, leads to

e L " (3.3-13

for the prolability that the noise current will pass through the value I
with positive slope dhurinlg the interval t, 1 + dl. The exlecte(l number of
such passages per second is

e- 12/20 [4 the expected number of zeros per secomll (3.3-14)

The expression (3.3-13) may also he derived from analogue of (3.3 5)
obtained by replacing the zecro in p(O, vj; x•) by y.

In some cases the integral

0= -4" jf ,) elf

does not converge.
An example occurs when we app)ly a broad iband noise Voltage to a re-

sistance and condenser in series. The power spectrum of the voltage across
the condenser is of the form

w(f) 1 .3-15)P + a2

Although 4,' is infinite, 4,o is finite and equal to wr/2a. A straightfixrward
substitution in our formula (3.3-11) gives infinity as the expected number
of zeros per second.

Some light is thrown on this breakdown of our formula when we consider
a noise current consisting of two bands of noise. (Ohe band is confined to
relatively low frequencies, and its power spectrum will he denoted by
wj(f). The other band is very narrow anti is centered at the relatively high
frequency f2. The complete power spectrum of our noise is then

w(f) = wj(f) + A 2A(f - _f)

28 On the D)istribution of Values (f Trigonometric Sums with Litwarlk [idcjildcrient

Frequencies, Amer. Jorae. if ath., Vol. LXV, pp WA) 615, (t943).
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where the unit impulse function 6 is used to representt the very narrow band.
The pwer spectrum of the narrow band is approximately the sante as that
of the wave AV'\2 cos 21rf2l.

The integrals i-curring in our formula are

jw(f)df faO wiU) df+ A2
W + A2

= W+A'

j w(j)f dj J2w'i(J dJ + A"1i2

UU+ A';

We suppose that A and f2 are such that
W >> A"

U << A" 2.

'lien our formula (3.3 11) gives us the expected number of zeros

2 Aft

We may give a qualitative explanation of this formula if we regard our
noise current as composed of a small component

I1 = 2"'A cos 2.rfg

due to the narrow band superposed on a large, slowly varying component
due to the lower hand. Since the r.m.s. value of the second component is
W'12 we may assign it a representative frequency f1 and write it approxi-
mately as

hi = (2W)"' cos 24ft

The zeros of the noise current are clustered around the zeros of the second
wave. Near such a zero

f = -+(2W)"'27rfiAt
where At is the distance from the zero. The oscillations of 11 produce zeros
when 11l1 is less than the amplitude of 12 or when

A > W"'27rf, I At

and the interval over which zeros are produced is given by

2At =
rf,
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The number of ze•s is. thti" multipfietŽ by 2f.. Since there are 2f, such
ibterva•s per w-cond the nuxnkher of xer- per second is

4 -r

This differs from the result given by our formula by a factor of 2/r.
This discrepancy is due to our representing the two bands by the sine waves
Ig and 1,.

From this example we obtain the picture that when the integral for tp
converge corresponding to A -- 0, while at the same time the integral for
4 diverges, corresponding to f2 -- c in such a way that Af2 - cc, the
noise current behaves something like a continuous function which has no
derivative. It seems that for physical systems the integrals will always
converge since parasitic effects will have the effect of making w(f) tend to
zero rapidly enough. The frequency which represents the region where
this occurs is of the order of the frequency of the microscopic wiggles.

So far we have been considering the formulas of this section in the most
favorable light possible. There ire experiments which indicate the possi-
bility of the formulas breaking down in some cases. Prof. Uhlenbeck has
pointed out that if a very broad band fluctuation current be forced" to flow
through a circuit consisting of a condenser, C, in parallel with a series com-
bination of inductance, L, and resistance, R, equation (3.3-11) says that the
expected number of zeros per second of the current, I, flowing through R

(and L) is independent of R. It is simply -(LC)-"•. The differential

equation for I is the same as that which governs the Brownian motion of a
mirror suspended in a gase0, the gas pressure playing the role of R. Curves
are available for this motion and it is seen that their character depends
greatly upon the pressure". Unfortunately, it is difficult to tell from the
curves whether the expected number of zeros is independent of the pressure.
The differences between the curves for various pressures indicates that there
may be some dependence*.

3.4 TIm DiSntlU'nION OF ZEROS

The problem of determining the distribution function for the distance
between two successive zeros seems to be quite difficult and apparently

" For example, by putting the circuit in series with a diode.
'0 This problem in Brownian motion is discussed by G. E. Ublenheck and S. Goudsmit,

Phys., Rev., 34 (1929), 145-151.
"31 E. Kappler, Annalen d. Phys., 11 (1931) 233-256.

"Since this was written M. Kac and H. Hurwitz have studied the problem of the ex-
pected number of zeros using quite a different method of approach which employs the
"shot-effect" representation (Sec.3.11). Their reaults confirm the correctness of (3.3-11)
when the integrals converge. When the integrals diverge the average number of elec-
trons, per sec. producing the shot effect must be considered.
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nobody has as yet given a satisfactory solution. Here we. shall give SoME
results which are related to tie general problem and which give an idea of
the form of the distribution for the region of small spacings between the
zeros.

We shall show (in the work starting with equation (3.4- 12)) that the
probability of the noise current, I, passing through zero in the interval
r, T -A- dr with a negative slope, when it is known that I passes through zero
at r = 0 with a positive slope, is

2w -4jo [r 0 _ p73/2) 1 + 11 cot '(-1)] (3.4-1)

where M2 and A-2s are the cofactors of pn = -4' and ;423 = in the
matrix

-o0'- (3.4-2)

-L4 ' 0 0,
M = m2tM - m2112

We choose 0 < cot- (-11) <_ ir, the value ir being taken at r = 0, and the
value ir/2 being approached as r -+ 0. It should be remembered that we
are writing the arguments of the correlation functions as subscripts, e.g.,
-44'r is really

4w2 jf w(f) cos 2rfi df (3.3-8)

As r becomes larger and larger the behavior of I at r is influenced less
and less by the fact that it goes through zero with a positive slope at r = 0.
Hence (3.4-1) should approach the probability that, for any interval of
length dT chosen at random, I will go through zero with a negative slope.
Because of symmetry, this is half the probability that it will go through
zero. Thus (3.4-1) should alpproach, from (3.3--10),

as r -4 O. It actually does this since M approaches a diagonal matrix
and both M 28 and H approach zero with M2/li --+ Min --+ -40oko'o. For a
low pass filter cutting off atfb (3.4-3) is

d rfb3-m12 (3.4-4)

The behavior of (3.4 1) as r - 0 is quite a bit more difficult to work out.
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M22 and M23 go to zero as -r Al2 -I as r , a n •.quently Ii goes
to infinity as T T1he final result is that (3.4 1) ap; romahes

(41) f/

dr ff 1, (3.4-5)41--[o •o woj

as r -4 o), assuming 4 / exists. I [er the Isulterscrilpt (4) 11 id( ita t he f iiwtli
derivative at T =- 0,

(4)• 4 16 f(47V(f) df (46

For a low pass filter cutting iff atfb (3.4 5) is

dr 70 (27rfb)2 (3.4-7)
30

When (3.4-1) is applied to a low pass filter, it turns out that instead of r
the variable

p = 2fbr, dp =- 2rft dr (3.4--8)

is more convenient to handle. Thus, if we write (3.4 1) as p(N,) (14, it fo1-
lows from (3.4- 4) and (3.4-7) that

P(10) --+ -* 2I/ .0919 as sP--
(3.4-9)

p (as a
30

p(sp) has been computed and plotted on Fig. 1 as a function of V, for the
range 0 to 9. From the curve and the theory it is evident that beyond
9 p(V) oscillates about 0.0919 with ever decreasing amplitude.

We may take p(¼) dv to be the probability that I goes through zero ill
sp, ± +d, when it is known that ! goes through zero at q, = 0) with a slope

opposite to that at V. p(v,) d,9 exceeds the 1)rohability that f goes through
zero at ; = 0 and in tp, tp + di, with no zeros in between. TIis is because
p(sp) dp includes all curves of the latter class and in addition those which
may have an even number of zeros between 4) and op. From this it follows
that the curve giving the probability density of the intervals between zeros
must be underneath the curve of p(s,).

A partial check on the curve for p(op) may be obtained i% comparing it
with a probability density function obtained exlerimentally by M. E.
Campbell for the intervals between 754 successive zeros. lie passed thermal
noise through a band pass filter, the lower cutoff being arouml 200 Ups. and
the upper cutoff being around 3UXX cps. The upper cutoff was rather grad-

65



ual and it is difficult In assign a reprcsentativc value. The crosses on figure
I are obtained from his data when we assume that his filter behaves like a
low pass filter with ; cutoff at fb z-- 2850, this choice being made in order
to make the maximum of his curve coincide with that of p(,*).

It is seen that some ,,f the crosses lie above p(p). This is probably due
to the fact that the acttual filter differs somewhat from the assumed low pass
filter.

On Fig. 1 there is also plotted a function closely related to (3.4-1). It
is the low pass filter form of the following: The prolbability of r passing

o.?0
o,°-T,. 14T- 7TH
015 -

I -- .0919

CIIPPCiM(NTAL POINTS

0- 2rTf 6

Fig. I -Distribution of intervals between zeros--low-pass filter
YAA4O is probability of a zero in aip when a zero is at origin.
y6 Ap is probability of a zero in A0 when a zero is at origin and slopes at zeros are of

opposite signs.
yl -" P(r),fb - filter cutoff, r - time between zeros.

through zero in r, r + dr when it is known that I passes through zero at
r-O0is

di[1. 2[A (41, -2 ,)"'I1 + H tan-' HI (3.4-10)

where the notation is the same as in (3.4--1) and - < tan-' H < ¶2 - -2"

This curve should always lie above p(V) and the small difference between
the curves out to q' = 4 indicates that [the true distribution of zeros is given
closely by p(gv) out to this point.

When (3.4-1) is applied to a relatively narrow band pass filter or some
similar device we may make some approximations and obtain an exprvssion
somewhat simpler than (3.4-1). As a guide we consider our usual ideal
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band p.ss filter whose range extends fromf 4 tofb . 'Te corielation function
is given by (3.2-5).

2L Sin si •r(fb - f.) cos rr(f + f.)

2r7 (3.2-5)

10 = t(fb - A)

From physical considerations we know that in a narrow filter most of the
distances hctween zeros will be nearly equal to

1
A +

i.e., nearly equal to the distance between the zeros of a sine wave having
the mid-band frequency. We therefore expect (3.4-1) to have a peak very
close to rT. We also expect peaks at 3r, , 57- etc. but we shall not consider
these, We wish to examine the behavior of (3.4-1) near r,.

It turns out that Ma is nearly equal to M2 so that H is large and (3.4-1)
becomes approximately d,r 4'0 1"2 M

where r is near r7.
In order to see that Ms is nearly equal to M2 we use the expressions

M21 = -- (4o -- &11) - iOV

M~~ + M~ 0= (to _ 44)K~ + #4)t741)2 W
-2 (= a t~I +C

it f
Mn2 + M2- ,4o0 Y4)410 + )(r4 4- ) 4'r-"2l

- (to+-- ,)B + CJM22 - M23 = (jPo + lkr)1(JP - 41,)(- Ik"' - 1'0 4 "21

= (40 + ip,)[- B + C1

B=

c P -0•&' + 4,4T -Or

From (3.2-5) it is seen that 4, may be written as

Or = A cos fr, i = 7t(fb + f.)

where firt = T and A is a function of r which varies slowly in comparison
with cos #r. We see that near r,, 44 is nearly equal to -4to . Likewise
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4', hovers around zero and 4,l,' is nearly equal to -- ",. Differentiating with
reslwpct to i gives

#ý, = A4' cos 8r -Af sin /r

=', (A.1" COftS) COS r -- 2A'fi sin Or

410 -- Ao 0 , 4 --- A

where Ao and AU' are the values oA A and itS second derivative at r- equal
to zero. These lead to

B (A oA" AA- oA)cos Or - 2A oA' sin fir

C = (A A"-- A') cos2 r - aoA0 'A + (A - A)-02

We wish to show that C + B and C - B are of the same order of magni-
tude. If we can do this, it follows that Mn - M2 is much smaller than
M2 + M29 since 4,o - 4•,, is approximately 240 while 4,o + V,, is quite small.
Consequently we will have shown that Mu is nearly equal to M22.

So far we have made no approximations. We now express the slowly
varying function A as a power series in r. Since 4'4 and 4' must be zero
for die type of functions we consider, it follows that

2

A' =A'O + "-
2

A +.
2

where we neglect all powers higher than the second. Multiplication and

squaring gives
2 2 2 tt

A 2 -A=r AoAo

2

AA" -A' 2 = A 'A' + -(A.A0 - A 2)
2

= AoA + F

2

Ao"- AAU o (Ao',AP - AU 2  F

Since, for small r, A and A" are nearly equal to A' arid AU, respectively
we see that the difference on the left is small relative to A',AU, i.e.,

IFl << IAoAU'I
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Our expression for B and C become approximately

B =EF cos 07 - 2AoA01'/r sin fir

C = F cos' Or - AoAo' sinn2 fr - AoAf 02

When -r is near -r , Or is approximately r. Hence both C + B and C - B
are approximately -Ao Ax r and are of the same order of magnitude. Con-
sequently M2 and M23 are both nearly equal and

Mu, = V,0[C + BI

= -AO'A ,r

When this expression for MH is used our approximation to (3.4-1) gives
us tC. result: If the correlation function is of the form

4, = A cosB f

where A is a slowly varying function of r, the probability that the distance
between two successive zeros lies between r and r- + dr is approximately

dr a

2 [1 + a2(r - 71)']312

where a is positive and

a =A 0of .ra, -- " -,i2) rt
- -0 'T1

For our ideal band pass filter with the pass band fb - f,

a rU&+ fa)2 1

and the average value of -r - r, [is a-'. Thus

ave.lr -711 _ 1 _ fbfa _ 1 band width
"f at, V'3 (f+ ± j.) 2V3r mid-frequency

When the correlation function cannot be put in the form assumed above
but still behaves like a sinusoidal wave with slowly varying amplitude we
may use our first approximation to (3.4-A). Thus, the probability that the
distance between two successive zeros lies between r and r + dr is approxi-
mately

6 dr

when -r lies near -ri whefe Tj is the smallest value of -Y which makes 4',
approximately equal to -41o. This probability is supposed to approach
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zero rapidly as r departs from ri , and b is chosen so that the integral over

the effective region around -r is unity.
It seems to be especially difficult to get an expression for the distribution

of zeros for large spacing. One method, suggested by Prof. Goudsmit, is

to amend the conditions leading to (3.4--I) by adding conditions that I be

positive at equally spaced points along the time axis between 0 and T.
This leads to integrals which are hard to evaluate. For one point between
0 and T the integral is of the form (3.5 -7).

Another method of approach is to use the method of "in and exclusion"
of z7eros between 0 and r. Consider the class of curves of I having a zero
at r = 0. Then, in theory, our methods will allow us to compute the func-
tions po(r), pi(r, r), p2(r, s, r), associated with this class where

po(r) dr is probability of curve having zero in dr
pi(r, r) dr dr is probability of curve having zeros in dr and dr
p2(r, s, r) dr dr ds is probability of curve having zeros in dr, dr, and ds

In fact po(r) dr is expression (3.4- 10). The method of in and exclusion
then leads to an expression for Po(r) dr, the probability of having a zero
at 0 and a zero in r, -r + dr but none between 0 and r. It is

Po(") = po('r) -- f p,(r, r) dr + '. pf(r, s, r) dA dsPo~r) =(3e.4-1j)

- ifr p(r, s, , r) dr ds de +

Here again we run into difficult integrals. Incidentally, (3.4-11) may be
checked for events occurring independently at random. Thus if ; dr is
the probability of an event happening in dr, then, if a, is a constant and the
events are independent, we have Po, P,, Pi, - given by ;,, a2, Ra,

From (3.4-11) we obtain the known result Po(r) = ie-"
We shall now derive (3.4-1). The work is based upon a generalization of

(3.3-5): If y is a random curve described by (3.3-1), the probability that y
will pass through zero in x1 , x, + dx, with a positive slope and through
zero in x2 , x,2 - dx2 with a negative slope is

-dx 1 dxIj din f dsmp(0, tj , x,; 0, ,it, x,) (3A4-12)

where p(b, 'i, x, ; 6, v2, z2) is the probability density function for the
four random variables

=j F(a 1 , a2, ** ; Gn z)

70 i 1,2.
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The x- and x2 play the role of parameters in (3.4 -12). This result may be
established in much the same way as (3.3-5).

When we identify F with one of our representations, (2.8-A) or (2.8-6),
of the noise current I(t) it is seeo that p is normal in four dimensions. We
may obtain the second moments directly from this representation, as has
been done in the equations just beWow (3.3-7). The same results may be
obtained from the definition of 4,(r), and for the sake of variety we choose
this second method. We set X1 - , x2 = + r. Then

ti - (I)I(t + T) =4,, (3.4-13)

-1+ = Limit fjI'(i + r)I'() dt

where primes denote differentiation with respect to the arguments. Inte-
grating by parts:

±(I + r) dI1) = (I('( + 7)I(1)1 - r'" + r)IO) t

We assume that I and its derivative remains finite so that the integrated
portion vanishes, when divided by T, in the limit. Since

1"( +'0 = :2 1(1 + 7)

we have

Setting r = 0 gives
-i 2

'711 712 = O

in agreement with the value of g22 obtained from (3.3-7). In the same
way

S= Limit r I'(1 + r)I() di - C1(Or)

Limit (t)IQ + ) di

,f 11(i + 7) at

Ti

= -€47
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where we have integrated by parts in getting 6n, - Setting r = 0 and using
" =-- 0 gives

tim 0

In order to obtain the matrix M of the second moments p,. in a form
fairly syrmnetrical about its center we choose the 1, 2, 3, 4 order of our
variables to be E, m , 712, -2 . From equations (3.4-13) etc. it is seen that
this choice leads to the expression (3.4--2) for M.

When we put 6 and i equal to zero, we obtain for the probabitity density
function in (3.4 -12) the expression

4 exp - (M22il' + 2Mintij 2 + M331)

Because of the symmetry of M, Mu is equal to Mu. When, in the integral

(3.4--12) we make the change of variable

[ M- F" Y -111[ M22 11/2 7
L2IM I [2, Y1M 21 MI 2

we obtain

dxt dx2 I M 1 p1 an fo"
SM2 - J x dx dy y

The double integral may be evaluated by (3.5-4). Let

Cs= C-O ( M cot (-I), H) = Mo3 [Mb --

where H is the same as that given in (3.4-2). Our expression now becomes

dx1 dx4 I M" +2 Ht (-
4 - M,It + H cot -H)]

From a property of determinants

M3 2MU -_ M2 = M (4, _-p)

Using this to eliminate I M I and dividing by

which, from (3.3-10), is the probability of going through zero in x1 , x- + dx,
with positive slope, gives the probability of going through zero in dx, with
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negative slope when it is known that ! goes through zero at x1 with positive
slope:

Slr +0 l'"+ŽJP1"IMI - MII't(4, - #fl)--8'Ni + H cat' ('-JIt)]

This is the same as (3.4-1).
The expression (3.4-10) is the same as the probability of r going through

zero in dr when it is known that I goes through zero at the origin with posi-
tive slope. This second probability may be obtained from (3.4•-1) by add-
ing the probability that I goes through dr with positive slope when it is
known to go through zero with positive slope. Thus we must add the ex-
pression containing the integral in which the integration in 5oth V, and '2

run from 0 to c. In terms of x and y this integral is
"x dx 10 dy 3 j-r'-v'-2(J2ns~Mh)zu

This is equivalent to a change in the sign of M2A and hence of H. After
this addition we must consider

I + II cot-' (-II) + 1 -- Hcot-, II

- 2 + 11 [cot-' (-H1) - cot-' HI

- 2 + Hl[r - 2 cot-t11

- 2[1 + H tan-' HJ

and this leads to (3.4-10).

3.5 MULTIPLE INTEGRALS

We wish to evaluate integrals of the form

j =Lo dxi jc (3.5-1)""(&s dx2ec t.,,,

Our method of procedi.re is to first reduce the exponent to the sum of
squares by a suitable linear change of variable and then change to polar
coordinates. This method appears to work also for triple integrals of the
same sort, but when it is applied to a four-fold integral, the last integration
apparently cannot be put in closed form.

The reduction of the exponent to the sum of squares is based upon the
transformation: If*

x= hiy, + ht21D2y2 + hakD3y 3 + " + h,,yD, I v

X. 0 1 k.D-4 y2 + - + h,, (3.5-2)
....... *+...........°.........,..... ......

x 0 +0 + .+0 D. y
* T. Fort, Am. Math. Monthly, 43 (1930), 1p. 477-481. See also Scott and Mathews,

Theory of Determinants, Cambridge (1904), Prob. 63, p. 276.
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where Do = 1, DP G t, Dr., == D,- , and D,, is the cofactor of a., (or
of a,. because they are equal) in 1t, :

all an" air
D, an a2,, hr =[D,_D,]-",

air ... art,

then, if none of the Dl,'s is zero,

E,2 2X + +Y.+ + 2

From (3.5-2); the Jacobian &(x, X,/(y, y,.) is equal to DQt".
Applying our transformation to the exponent:

Xi =y - aD'2
xa=0 + D'• l n y

D2- 1 - a2

Since x2 runs from 0 to 0o so must y4• The expression for x1 shows that yl
runs from a Dj'2v2 to cc. The integral is therefore

J02-112-' dy2 f C dyl

We now change to polar coordinates:

ya= p cos 6y =pCosin dyt dy2 = p dp dOy2 = p sin 0

ys 0 gives 0 <0 < r

yi Ž aDLC"y 2 gives cot 0 > aD-"2

and obtain
j = D2-1/2 d# -' da

= jD;'t ' cot-' (aDj"t/)

where the arc-cotangent lies between 0 and r. This may be written in the
simpler form

I = 4(1 - 'a)- 2 cos-' a = csc •,

where
a = COS jP,

it being understood that 0 <g Kr ir.
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Other integrals may be oblained by differentiation. Tlhus from

f dX f dy C-0-IPCU jyr cu 0= (3.5-3)
we obtain

dx dy xy -z'-zyto' I - w2 P(I - 9, cot qa) (3.5-4)

By using the same transformation we may obtain

dx dy ye-''-'0- -- . 1V + (3.5-5)4 I+a

Of course, we may expand part of the exponential in a power series and
integrate termwise but this leads to a series which has to be summed in each
particular cpse:

izf dxdye 3r

1 ~ ,+ l) r ý-+r'
4,..o rv2i

If we take -1 < R(m) < - , -I < R(m) < -1, the series may be
summed when a = 1. The result stated just below equation (3.8-9) is ob-
tained by continuing m and n analytically.

The same methods will work when the limits are t ®. We obtain, when
m and n are integers,

dx dy ?- 3m,-.'-u'-R-zV Cos.

'0, n + modd

W (sin +p)S+M+-1-n 1•+

S - n + m even
2 2

The hypergeometric function may also be written as

F -- " 2; 2 ;si'p
2

75



By transformations of this we are led to the following ex)pression for the
integral

0, n ± in odd,

(in)2 '+ \ . F --- ' cos tit, n, both even,
(sin 49)"l+S+'I

(Bin )co! 2-
m, n odd

As was mentioned earlier, the method used to evaluate the double inte-
grals may also be applied to similar triple integrals. Here we state two
results obtained in this way.

dx dy J dz exp x - y' - z - 2cxy - 2bzx - 2ayz]

i [a + +

jdx dy d ys exp -x ' - ? - -2cxy -2bx- 2ayzJ

V{ + : +- a,- (+ - + - ) (3, +-)

where and "y are obtained by cyclic permutation of a, b, c from
a=081 a -- cb = sin-1[ Do .t

0co (1 - C')"'(1 - Y5)l2 L(1- c!)(-I -b)

a - bc= cot-, -s¢

where a, 0, -y all lie in the range 0, r and where
I c b

Da = c 1 a = 1 2abc- a- b-c2

lb a I I

For reference we state the integrals which arise from the definition of the
normal distribution given in section (2.9)

dx, ... I? dx. exp -- a,,.xrx. =L j

x fOd zx (3.5-8)"+CO n [ W-" At.

76



where Ilie quadratic form is ptositivc definite and I a I is its determinant.
A ,. is the cofactor of a, _ Incidentally, these may lhe regarules as speciai
cases of

dr f f...jE dxa a, xLx F b, x,

-rn 1 2 1>112 f mdx fdyy"n 2 f(x2 + Y')

(n - 1) i-c(3.5-9)

r( H- niA bl, Up]
Ja I

which is a generalization of a result given by Schlimilch.*

3.6 DISTRIBUTION OF MAXIMA OF NoIstE CURRFNT

Here we shall use a result similar to those used in sections 3.3 and 3.4. Let
y be a random curve given by (3.3-1),

y = F(a.. an ; x). (3.3- 1)

If suitable conditions are satisfied, the probability that y has a maximum in
the rectangle (xi , x, + dx, , yi , yj + dyl), dxl and dy1 being of the same
order of magnitude, is 2

-- dxi dy, [ p(y,, 0, r)t dc (3.6-1)

and the expected number of maxima of y in a < x < b is obtained ib in-
tegrating this expression over the range -3 < yj • x, a C x1 < b.
p(Q, ,l is the probability density function for the random variables

= F(a,, a.v ;xi)

(I

kaxhz (3.6-2)

* Hoheren Analysis. Braunschweig (1879), Vol. 2, p. 494, equ. (2'W.

" Am.. Jour Mfatlk. Vol. 61 (1939) 409-416. A similar problem has been studied by
E. L. Dodd, The Length of the Cycles Which Result From the Graduation of ('hance
Elements, Ann. Math. Stat.. Vol. 10 (1939) 254-264. He givcs a number of references
to the literature dealing with the fluctuations of time series.
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In our application of this result we replace x and y by t and I as before.
Then

N

-- t - Cos (.S -Cos
I

V = I"l

where the primes denote differentiation with respect tot. According to the
ccntral limit tlheoite 1  th, dibkibuti,_n of t, n, j apprtiaches a normal law.
The second moments defining this law may be obtained either from the
above definitions of Z, 77, f, or may be obtained from the correlation function
as was done in the work following equation (3.4-13).

S-• 0 , = -g;, •

( = Limit 1 I'()"(i)
T- T L( a5

=Limit -1k [1(T) _- I"o(O)J 0
S2t

S=ULimit IQ)r (t) dt

Limit 1 f0r

r2=Limit I"(t)l(t) dt

= Limit f~ji 4 ~)Q ds

= 00

where the superscript (4) represents the fourth derivative. The matrix M
of the moments is thus

M = -0P'

The determinant I M I and the cofactors of interest are

I MI -- 4'(t,44' - 4,0") (3.6-3)

M, - -4O'14,4o), MA = C2o MP=
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The probability density function in (3.6-A) is

p(I, 0, r) = (27r)-3 2 I M -112 exp

I (MtI' + Mai + 2Mn a-) (3.6-4)

and when this is put in (3.6 -1) and the integration with respect to " per-
formed we get

dJ dt We_. -:', [I 2I"11'''''''

L_ ý_) 1 +071124 9 M131 " (3.6-5)
+ M t GY"3 (-""6I + M 1 8 [ 1 T '--l ]

for the probability of a maximum occurring in the rectangle dl dt. As is
mentioned just below expression (3.6-1), the expected number of maxima
in the interval fl, t, may be obtained by integrating (3.6-1) from t1 to 12
after replacing x by t, and I from - -o to + -o after replacing y by r. When
we use (3.6-4) it is easier to integrate with respect to r first. The expected
number is then

(1:j)#5/ 0f2Mj 182 j4d 4
- di 1 -1 r ex a- 2)]

M1.1 It - L---0o
2s 2wL

Hence the expected number of maxima per second is

Fo abad as ~= F 't-f (3.6-6)

For a band pass filter, the expected number of maxima per second is

3• f 6-fJ / (3.6-7)

where fb and f. are the cut-off frequencies. Putting f. = 0 so as to get a
low pass filter,

fb = .775fb (3.6-8)
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F~rom (3.6 8) and (3.6 5) we may obtain the probability density function
for the maxima in the case of a low pass filter. Thus the probability that
a maxiniun sclelted at random from the universe of maxima will lie in
I, I + dl is

3vTh#[2r v + (5r)112 Ye (1 ef1()12),-3 2e --/ +y + erf y (3.6-9)
3V 22€

where
Y

1 1 - - -

I . urur 10 SF cuaNu

- -o I I VALUE

I I r
I

I i 1

i . FI )!I1

Fig. 2--Distribution of maxima of noise current. Noisve through ideal low-pas~s filter.

dl/• d = prolaaluility that a maximunt of I selected at random lies b~etween l and! + +d.

ViCt.

When y it large and positive (3.6-9) is given asymptotically by

If w-e write (3.6-Q) as py),) dy, the probability density p,(v)" of ' may be

plotted as a function of y. This plot is shown in Fig. 2. Thew distribution
function P(Ji,,x, K YV') defined by

03"

P~.. < yv'•,) = P,(y) .4•

and which gives the probability that a maximum selected at random is
less than a specified YvV"• I, is one of the four curves plotted in Fig. 4.

If I is large and positive we may obtain an aIpllroximation from (3.6-5).

We observe that
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so that when I is large and positive
e - If 1[21 Aft •<• e--1/24O

Also, in these tircumstaiicvs the 1 + erf is nearly equal to two. Thus re-
taining only the important terms anti using the definitions of the M's gives
the approximation to (3.6-5):

V tFý c ~ (3.6-10)2 wODL -ko J

From thi.s it follow:; that the expected number of maxima per .sec(nd lying
above the line I = I1 is approximately"3 when I, is large,

TvL 0 J - (3.6-11)

= e 1-• X .the expected number of zeros of I per second]

It is interesting to note that the approximation (3.6-11) for the expected
number of maxima above I, is the same as the exact expression (3.3- -14) for
the expected number of times I will pass through It with positive slope.

3.7 RESULTS ON THE ENVELOPE OF THE NOISE CURRENT

The noise current flowing in the output of a relatively narrow band pass
filter has the character of a sine wave of, roughly, the midband frequency
whose amplitude fluctuates irregularly, the rapidity of fluctuation being
of the order of the band width. Here we study the fluctuations of the
envelope of such a wave.

First we define the envelope. Let f. be a representative midband fre-
quency. Then if

wow = 2rf,, (3.7-1)

the noise current may be represented, see (2.8-6), by

I = cncos ( -i ,t t W. I +W.
n-I (3.7-2)

- Io cos w,.,t -- I. sin w t

where the components 1, and I. are
N

lc = 1 C Cos (W, t - Wm t -
n-I

N, (3.7-3)

S= • c. sin (Wnt - W,, t - %on)
nl-1

-' This cxIprcssion agrees with an estimate made by V. D. [Landon,. Proc LIk. F.. 2Q
(1941), s5oS5. lh" discusscs the number of crests exceeding four tinms the r.n.s. value
of 1. This corrcsponds to 1 r = 1 6,,
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The envelope, R, is a function of t dcfined by

R - ie. + 411' (3.7-4)

It follows from the central limit theorem and the definitions (3.7-3) of r.
and f. that these are two normally distributed random variables. They are
independent since 4_4 - 0. They both have the same standard deviation,
namely the square root of

4 = 4 W -(f ) df, -4o (3.7-5)

Consequently, the probability that the point (1., I,) lies within the ele.
mentary rectangle dM1. is

dl.od l exp 42 J (3.7-6)

In much of the following work it is convenient to introduce another ran-
dom variable 0 where

.r. - R cos 0

I. - R sin 0 (377)

Since I and I. are random variables so are R and 0. The differentials are
related by

dlI. - RdOdR (3.7-8)

and the distribution function for R and 0 is obtainable from (3.7-6) when
the change of variables is made:

dO R dR -nt'l#.dO -- (3.7-9)

Since this may be expressed as a product of terms involving R only and 0
only, R and 0 are independent random variables, 0 beijig uniformly dis-
tributed over the range 0 to 2w and R having the probability dersity"

R i-1111200 (3.7-10)

#0

Expression (3.7-10) gives the probability density for the value of the en-
velope. Like the normal law for the instantaneous value of I, it depends
only upon the average total power

#0 .L u)"df

SSee V. D. Landon and K. A. Norton, I.R.E. Prec., 30 (1942), 425-429.
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We now study the correlation betwcien R at time I ad its valueat some
later time t -I- r. Lct the subscripts I and 2 refer to the times I aud t + r,
respectively. Then from (3.7--3) and the central limit theorem it follows
that the four random variables In , l,1, 1 ,, 1,2 have a four dimensional
normal distribution. This distribution is determined by the secondl mo-
ments

i = 2,i = i02 = 12 = 410 1111
"lalt= 4' la 0

1 N

C= A " cos (war -- 0).r)

---4 if w(f) cos 2r(f - fl.)r df = U (3.7-11)

Id 1.2 -- t1 j = 4- cl. sin (wcor - O. T)
2 nel

-f fw(f) sin 2r(f- f.)rdf

The moment matrix for the variables in the order ,t I., , 1,d, 4, is

toa 0 JAI$ PA141

M 0 0 -0414 PuA
PA/ 514 0o 0

LEU1 A13 0 tPe

and from this it follows that the cofactors of the determinant j M I are

M 1 1 = M2= M3 M44 =4 0 (4,22,- ,)

=oA A = 2 0 P32 1 (3.7-12)= ~ ~ ~ 0 0,,A=€- A14-.;

M 12 = M4 = 0

Mis = MA4 = -- lA

M1 - M2 = -p-4A

IMI = A'
The probability density of the four random variables is therefore

S p 1 r, + + 12 + ,2)

4PAxp - y-Ll1 + 2 + 3 T4
4e A 2A

- 2M13(iII + 1214) - 2 M,4(I[1 4 - 1218)]
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where we have written I , 12 , I8, r for ,1 , r, ,2 , 1.2. We now make
the transformation

r, = R, cos 01 Is = R2 cos 02

I = R, sin 01  G = R2 sin 02

and average the resulting probability density over 01 and 02 in order to get
the probability that R, and R2 lie in dR1 and dR 2 . It is

R1 R2 dR2dRf 2 1 f 2t

4r-2 A j d p

- 1 4 ,ooR• + 4,oR1 - 2pnR, R 2 cos (02 - 01) - 2gu, RR 2 sin (02 - 0•1

2A

Since the integrand is a periodic function of 02 we may integrate from
0, - 01 to 02 = 0, + 2w instead of from 0 to 2 r. This integration gives the
Bessel function, 10, of the first kind with imaginary argument. The result-
ing probability density for R, and R2 is

.RitRA [LLIS + u141"' exp -- (R2 + R) (3.7-13)

where, from (3.7-12),

A = Oo4 - A- 14

pU and lp, are given by (3.7-11). Of course, R, and R2 are always positive.
For an ideal band pass filter with cut-offs atf. andfb we set

f. -•+f.
. = Aw(f) wo for f1 <f<1f

and obtain

10= WO(fb - /.)
'•wo sin r(fb - f.)r

Ai = AWo cos 21r(f f.j-r df = sir

=J14 wo sin 27r(f -fj)r df = 0

The Io term in (3.7-13), which furnishes the correlation between R, and R 2 ,
becomes

,JR 1: sin x

x8
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where xis (fb - f,) r. When x is a multiple of r, R1 and R2 are independent
random variables. When x is zcro R, and .R2 are equal. Hfence we may
say, roughly, that the period of fluctuation of R is the time it takes x to in-
crease freon 0 to r or Ofb - JMY3 . This is related to the result given in the
next section, namely that the expected number of maxima of the envelope
ik .641 (fb - f.) per second.

3.8 MAXIMA or R

Here we wish to study the distribution of the maxima of R.* Our work
if; basýed upon the expres.ian, cf. (3.6- 1),

to R" " R

-dR di f p(R, 0, R")R" dR" (3.8-1)

for the probability that a maximum of R falls within the elementary rec-
tangle dR di. p(R, R', R") is the probability density for the three dimen-
sional distribution of R, R', R" where the primes denote differentiation with
respect to I.

We shall determine p(R, R', R") from the probability density of I,, I.
C, 1, , 1 , which we shall denote by x•, X . The interchange

of I', and I' is suggested by the later work. It is convenient to introduce
the notation

= (2r)'jw(f)(f-J.) df (3.8-2)

to = 0o

where f. is the mid-band frequency, i.e., the frequency chosen in the defini-
tion of the envelope R. b. is seen to be analogous to the derivatives of
4K(r) at r = 0.

From the definitions (3.7-3) of I, and I. we obtain the second moments

2 2

X4 = AD

N

X!= w(f3 )AJ4r 2(fI,. ) =
1

2 ,'

=6 is = h2
xl' = i" = 64,

2 -t

a•= 1, = A.

Incidentally, most of the analysis of this section was originally developed in a study
of the stability of repeaters in a loaded telephone transmission line. The envelope, R,
was associated with the "returned current" produced by reflections from line irregularities.
However, the study fell short of its object and the only results which seemed worth sal-
vaging at the time were given in reference2 cited in Section 3.3.
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X1 X-2 = w(fj)Af2ir(f,, -) b

N
It (fjry

x, x8  Iel IC"(ft47 2 f f) 2 = b62

x,x. = 1.1. -b2

X2 X3 = If IC = -b3
X5 XS= Io is =

All of the other second moments are zero. The moment matrix M is thus

bo b6 - b2 0. 0 0
b, b2 -6b 0 0 0

M b-2 - b3 b, 0 0 0

0 0 0 be -- b6 -b-1
o o 0 -bi b2 h

The adjoint matrix is

B0  B, --BR 0 0 0
B, B, - Bs 0 0 0

-B, -B, B1 0 0 0

0 0 0 B -B, -- Bt
0 0 0 -B, Bn Ba

0 0 0 -B2 B8  B4 j

Bo = (V 4 - bb n,2= M.(,- b:)B
B1 = - (b616,- b )B B& = - (bob,-- bljb)B

B2 = (bh - b9)B B, = (b~b - b2)B (3.8-3)

B W02b4 + 2 b6b2ba
-b32 - b•e - b~b!

MI B2 13

where B is the determinant of the third order matrices in the upper left and
lower right corners of M.

As in the earlier work, the distribution of x1 , -- , xg is normal in six
dimensions. The exponent is - 12 I M I I' times

Bo(x4 4) + 2B(xlx2 - x.x5) - 2B2(xlx; + xace)

+ B 22(x + 4) - 2B,(xaxs - zxxe) (3.8-4)

+ h(46 + S)
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In line with the earlier work we set

xj = 1. RRcos0 x 4 = I.= Rsin0

x= I R'sin0+ Rcos 00'

x C=i =R'cos0- Rsin00'

xa c C = cos 0 - 2R' sin 00'

- R cos 00"2 - R sin W0"
'I

e= 1 K" sin V + 2R' cos tf0'

- R sin 0o'2 + R cos 00"

The angle 0 varies from 0 to 2v and 0' and 0" vary from - ac to +- . By
forming the Jacobian it may be shown that

dxl dx 2 " -dxi = le dR dR' dR" dO dO' dO"

Also, the quantities in (3.8-4) are

X4 + x4  A' xxj + x ' xe RR" -R2

xis, - x4x Rt&' xe + X2 = R" + k•o"
x2xs - xsxs = RR"6' - 2R20' - R'RO" - leOf

4 + x6 = R"' - 2RR"0n + 4R +"0" 4RR'0V""

+ R2t + R~e'6

The expression for p(R, 0, R") is obtained when we set these values of the
x's in (3.8-4) and integrate the resulting probability density over the ranges
of 0, 0', 0":

p(R, 0, A") A dOI d0' dO" (3.8-5)

exp -~ [B0oR + 2B, R20' - 2B2(RR"- _R0,)

2P3

+ BR2'O2 - 2BsRO'(R" - R04)

+ B4(R"'2 - 2RR"0" + R2 0" + Rly" 2)J

The integrations with respect to 0 and 0" may be performed at once leaving
p(R, 0, R") expressed as a single integral which, unfortunately, appears to
be difficult to handle. For this reason we assume that w(f) is symmetrical
about the mid-band frequency f, . From (3.8-2), b1 and b1 are zero and
from (3.8-3), B, and 13 are zero.
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With this assumption (3.8-5) yields

p(R, 0, R") = R2(21r)2-82 BB112 f dO (3.8-6)

1

"exp - i[Bo0i' + RO(IJ + 2.jtRO"2 - 2B 2R") + B14(" - R' 2)2)

The probability that a maximum occurs in the elementary rectangle dR

di is, from (3.8-1), p(t, R) dR di where

0

p(t, R) m -f p(R, 0, R")R" dR" (3.8-7)

We put (3.8-6) in this expression and make the following change of variables.

1/2 lit

x • RO4 , y B
vSB V-2 B

RI
SB2 - R V2 R (3.8-8)%12B' 4B VA2

(Bu+ 2B,) [3 bo 41 (
-2Bb

a, Bo 2B4 _ bobk2BI b2

where we have used the expressions for the B's obtained by setting b1 and

% to zero in (3.8-3). Thus

p(t R) (B f y dy A] 1' dx (3.8-9)

exp [-a z2 + 2bzx + 2sy - (x + y)f

As was to be expected, this expression shows that p(l, R) is independent of t.

A series for p(t, R) may be obtained by expanding exp 2z(y + bx) and
then integrating termwise. We use

dy dx xgy7 e- (r+Y,),_ r(,y + l)r(p + 1)
"vi r ty + f + 1

2

which may be evaluated by setting

x =p cos 6, y p sint 'P
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The double integral in (3.8-9) becomes

..os.w/r ' (2z)? n!," I'(Qn + J)F.(n - m + 2)

n-o m.-0 !) 2 ft2(

2 4

r i+

e-"""nanai)(n ")

where Ai Ing andl

== n[2e - a- -()M2d

A E(- (n-n + )b, 0< n (3.8-10)

n !

(n ± 1)(t- b 2 
- (I - b.."2, n large

2

The term corresponding to m =.0 in (3.8 010) is it + n i.
We thus obtain

pQRtA-- (B A312,9
4b ab V ir r t + 7

b~" 1:'22 (a 2 
- )"j2 z" 2  An

4Vir b0  X 7

We are interested in the expected number, NV, of maxima per second.
From the similar work for 1, it follows that N is the coefficient of dt when
(3.8-1) is integrated with respect to R from 0 to ý3. Thius from (3.8-7) and

dR = yi 4 2W2 ds = (2b01B) 1 12 b-23 2 dz

= [2bo(a 2 
- 1)" 2 dz

wve find

N f pRlR) dR

_(a' -12 r/(2 \4
1 A

- 2a52 ~;7 t G~) (3.8-12)

Equations (3.8-11) and (3.8-12) have been derived on the assumption
that wQ3) is symmetrical abnut Ai.e. the band pass filter attenuation is
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symmetrical about the mid-hand frequency. We now go a step further and

assume an ideal band pass filter:

v(f) = ao < f <fb

w(J) = 0 otherwise (3.8-13)

2/. +h+f&

Putting these in (3.8-2) we obtain zero for b, and b. and also

- ta f -- f4) = 4o

V .2 WO 
f

b - (l -I.)'

5

(3.8-14)

6 (3 - a') (3
R = 2bo(a' 2 1) /1's 3 1#00,,12"

S[;3jIIts 12 (A' - q' RS o '€

n A, n A,
0 1 4 6.775
1 2.3 5 8.333

2 3.735 6 9.9002
3 5.238 7 11.4736
AS -• 1.5811 n + .3953

From (3.8-12) we find that the expected number of maxima per second
of the envelope is

N = .64110 (ft -- J) (3.8-15)

assuming an ideal band pass filter.
The distribution of the maxima of R for an ideal band pass filter may be

obtained by placing the results of (3.8--14) in (3.8-11). This gives

p(: 1) d =dR (Jb_-f.)A/f(4fl;'8e2

12-eft AU 1

90
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It is convenient to define y as the ratio

R R = (ft)"2

r.nus. t() 4/2

where R is understood to correspond to a maximum of the envelope. Since
the value of R corresponding to a maximum of the envelope selected at
random is a random variable, y is also a random variable. Its probability
density is Pa(y), where

P(t, R) dR
Pa (Y) J=0.64110(4 - fo)

Pn(y) has been computed and is plotted as a function of y in Fig. 3.

... ..... - I- _ V -IR = rENVtoPE or OUTPUT
NOISE CURRE NT

Ca -. .. 0 IA M S NOI S CURRrENT

0 d. . . . . - -] . . . . . . . .

MY)

0.I2

005 1- I 0 Y 2 - 5d

Fig. 3-Distribution of maxima of envelope of noise current. Noise through ideal band-
pass filter.

_- dR - probability that a maximum of R selected at random lies between R and

R +dR.

The distribution function P(Rr.na < y/ýO) defined by

P(R,,.ax < yp/,/4) = Pa(y) dy

and which gives the probability that a maximum of the envelope selected
at random is less than a specified value yVV&0 = R, is plotted in Fig. 4 to-
gether with other curves of the same nature.
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When y is large, say greater than 2.5,

.64110f

ye7-,

*eIs -<- -0 /

at- / ___//

71

Go-

I-. ' _____ll._

go____ _ I A 9vl

0-0a

Fig. 4T-Pistribution of maxima
A - F(I < y¼f-)m probabilityof I beinglesIsthanly%/*-. Similarly C""P(R <

B - P(I max < a%-4o probability of random maximum of I being less than yxVtpe
Similarly D - P(R max <CN"-)
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The asymptotic expression for Pu(y) may be obtained from the integral
(3.8-9) for p(t, R). Indeed, replacing the variables of integration x, y in
(3.8 9) by

y= X + y,

integrating a portion of the y' integral by parts, and assuming b < 1
(a2 > 1, by Schwarz's ineqjuality, so that b < I always) leads to

pQt, )�IX) (b 4 211o (R

when R is large.
If, instead of an ideal band pass filter, we assume that w(J) is given by

2rvi e , a (3.8-16)

we find that
b•:1

i= 4Irb2, = 47r 2 a"

b, 16x'r V~

a =3, b = 0

Aft (i+ 1)

Some rough work indicates that the sum of the series in (3.8-12) is near
3.97. This gives the expected number of maxima of the envelope as

N = 2.52a, (3.8-17)

per second.
The pass hand is determined by o. It appears difficult to compare this

with an ideal band pass filter. If we use the fact that the filter given by

w(f) = Wo exp -- ',f - /.

passes the same average amount of power as does an ideal band pass filter
whose pass band isfi -A , we have

A - f = a

and the expression for N becomes 1.(.96 (fb -

3.9 ENERGY FLUCTUATION

Some information regarding the statistical behavior of the random vari-
able

E = 12(t) d, (3.9--)
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where 1(1) is a noise current and 11 is chosen at random, has been given in a
recent articie8 Here we study this behavior from a somewhat different
point of view.

If we agree to use die representations (2.8-1) or (2.8-6) we may write, as
in the paper, the random variable E as

F J2(Q) d• (3.9-2)

where the randomness on the right is due either to the as's and b.'s if (2.8-1)
is used or to the o,,'s if (2.8-6) is used.

The average value of E is mT where, from (3.1-2),

712 T12M, = E 2 1= (t) di =/ jP(0 ) di - T 4,o(3 9 )
(3.9-3)

=Tiw(f) df

The second moment of E is

= f df, dtulz(ii )PI() (3.9-4)

If, for the time being, we set 12 equal to i1 + r, it is seen from section 3.2
that we have an expression for the probability density of I(11) and I($, + r)
and hence we may obtain the required average:

=9 i: 2 exp

(-A- (#,ofl' + (,3.9 - (9-5)

A = 4,0 - O4, I, = I(t,), 12 = I(11 + T) =1(2)

The integral may be evaluated by (3.5-6) when we set

1I = Ax 12= Ay j/92

1P, = -4'0 Cos qP (3.9-6)

A = #o sin v

A "Filtered Thermal Noise-Fluctuation of Energy as a Function of Interval Length",
Jou. Acous. Sot. Am., 14 (1943), 216-227.
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Thus
I22• = (1 + 2 cos2

(3.9-7)

Incidentally, this gives an expression for the correlation function of 1'(1).
Replacing r by its value of t2 -1 t and returning to (3.9-4),

= TV2 + 2jf2 dT/ 2 d1/ 2At 42 - 11) (3.9-8)

When we introduce ar, the standard deviation of E, and use

2p = f9-' _ 11

we obtain

or = (E- '•) L 2 at t2' - ,
)2 02.12

= 4 (T- xh)'(x)dx

where the second line may be obtained from the first either by changing the
variables of integration, as in (3.9-27), or by the method used below in
dealing with EX. I am indebted to Prof. Kac for pointing out the advantage
obtained by reducing the double integral to a single integral. It should be
noted that the limits of integration - T/2, T/2 in the double integral may
be replaced by 0, T by making the change of variable I = I' - T/2 for both
11 and is.

When we use

47) f w(f) cos 27rfr df (2.1-6)

we obtain the result stated in the paper, namely,

, = ,,,,()Lf +f,)T (3.9-9)

+ sin(. - Jh)"
r'(fz_ - J2) =1

If this formula is applied to a relatively narrow band-pass filter and if
T(fb - f.) > > 1 the contribution of thef1 + J2 term may be neglected and
we have the approximation

2l, wo +a/ sin2 r(S - ) T
OT =f w0 .d(.f f wo)#2W r2r (llffU J2)LI

= W2T(fb -/,,) (3.9-10)
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where, from (3.9- 3)

mr = 2L'oT(fb J,) (3.9-11)

The third moment i, may be computed in the same way. However, in
this case it pays to introduce the charac-teristic function for the distributioII
(if 1(t1), 1(12), I(t3'. Since this distribution is normal its characteristic
function is

Average exp Liz, l1 + iz2 12 + iz3 Ial
-~~~ 22'-.i?( + -23

-xp (- + z•) + &2 t,)z1 z.2  (3.9-12)

+ 003 - 1,)zIz 8 + 0(,8 - ,Z 2zaJ

From the derfinition 6f the characteristic function it follows that
2 22

1-2 -3 =-oeff. (of 1Zj Z2 Z7 in ch. f.
21212!

= 4,o + 2'o0(',L + #'§i + ) (3.9-13)

+ 8B#210A1#432

where we have written 021 for #,(t - ti), etc. When (3.9--13) is multiplied
Iy dt, al12 d13 , the variables integrated from 0 to T, and the above double2
integral expression for 2?- used, we findT T0

t--")=2 !2' 1dAr, dt2 f d13 4121 41-41 432 -.

D)enoting the trilple integral on the right by J and differentiating,

d'I 3 T-A dt2,1(.,- t1)4#(T" - 1,)4#(T t-1)
= 3 7 dx 'T*(x - y)4(x),(y)

6 fo dx f dy,(x - y)j,(x)#(y)

In going from the first line to the second I, and I,.. were replaced by 7" - x and
T - y. respectively. In going from the second to the third use was made of
the relations symblIi,,eI by

f dx -tdv f f oxfdy + fordx fdv

dx dy + 7dy f dx
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and of the fact that the mtegrand is symmetrical in x and y. Integrating
dJ/dT with respect to T from 0 to TI, using the formula

dT f(x) dx (7" -- x)f(x) dx,

noting that J is zero when T is zero, and dro~pping the subscript on T, finally

gives

(F -_ ) = 48 j dx j dy(T - x)j(x)4(y)4,(x - y).

P' may be treated in a similar way. It is found that

(E - - 3 E- F)2 2  A3!2 fdt, dt2  dtf de 4 ,2,Csi# 4 2t,

which may be reduced to the sum of two triple integrals. It is interesting

to note that the expression on the left is the fourth semi-invariant of the
random variable E and gives us a measure of the peakedness of the dis-
tribution (kurtosis). Likewise, the second and third moments about the

mean are the second and third semi-invariants of E. This suggests that
possibly the higher semi-invariants may also be expressed as similar multiple

integrals.
So far, in this section, we have been speaking of the statistical constants

of E. The determination of an exact expression for the probability density
of E, in which T occurs as a parameter, seems to be quite difficult.

When T is very small E is approximately 1P(t)T. The probability that

E lies in dE is the probability that the current lies in -1, -1 -dl plus the
probability that the current lies in I, I + dl:

2dl 12 E.

Sexp - 4o (2r/ooET)Y1 exp - 2,o 7 dE (3.9-14)

where E is positive,

1(Is)" 2  dl = - (ET)-" dE
2

and T is assumed to be so small that I() does not change appreciably during
an interval of length T.

When T is very large we may divide it into a number of intervals, say n,

each of length T/n. Let F, be the contribution of the r th interval. The

energy E for the entire interval is then

E F- + ,F- + +..±

If the sub-intervals are large enough the EA's are substantially independent
random variables. If in addition n is large enough E is distributed nor-
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mally, approximately. Hence when T is very large the probability that E
lies in dE is

dFi i, exp - (- (3.9-15)

where

11,r = T d wf)/
(3.9-16)

2
or = T w'(.f) df

the second relation being obtained by letting T --+ o in (3.9-9). The
analogy with Campbell's theorem, section 1.2, is evident. When we deal
with a band pass filter we may use (3.9 -10) and (3.9-11).

Consider a relatively narrow band pass filter such that we may find a T
for which Tf 4 > > 2v but T(fb - fJ) < < .64. Thus several cycles of fre-
quencyf. are contained in T but, from (3.8-15), the envelope (toes not change
appreciably during this interval. Thus throughout this interval I($) may
be considered to be a sine wave of amplitude R. The corresponding value
of E is approximately

E=T 1-2

where the distribution of the envelope R is given by (3.7-10). From this
it follows that the probability of E lying in dE is

dE E dE -_jrjTexI) - 4 -oT mer (3.9-17)
4uT MiT

when E is small but not too small.
When we look at (3.9-14) and (3.9-17) we observe that they are of the

form

aE" e dE (3.9-18)
r(n + I)

Moreover, the normal law (3.9-15), may be obtained from this by letting n
become large. This suggests that an approximate expression for the dis-
tribution of E is given by (3.9-18) when a and n are selected so as to give
the values of mt and or obtained from (3.9-3) and (3.9-9). This gives

2

a r = +I 2(3.9-49)
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and if we tdrop the subscript 71' and substitute the value of a in (3.9--18) we
get

02! (ex] d (ni-C\ (3.9-20)

r(n+ 1) C)/ \,2/a I'.

An idea of how this distribution behaves niav 1, oIbtained from the
following table:

n T(1 A -- f) X.E .0X; Y I'•. 6t •

0 0 .29 .695 1.39 .4 L; 2.00
1 1.45 .96 1.68 2.69) .572 1 .60
2 2.4 1.7.1 2.67 .4.94 .647 1.47
3 3.4 2.54 3.67 5.12 .(02 1.39
5 5.4 4.22 5.67 7.42 .744 1.31

10 10.5 8.6& 10.67 13.02 . M8 1.22
24 25 21.47 24.67 28.17 .870 1.14
48 50 44.1 48.7 53.5 .905 1.10

where n is the exponent in (3.9 -20). The column T(fJ -. ,f) holds onlyx for a
narrow band pass filter and was obtained by reading the curve y,, in Fig. I
of the above mentioned paper. The figures in this column are not very
accurate. The next three columns give the points which divide the dis-
tribution into four intervals of equal probability:

= =.E.2 = energy exceeded 7.5 of time

-?nE.wo
X.5w = 2, E. 60 = energy exceeded 50%/o of time

mE.75
X.76= - 2 E.7b = energy exceeded 25% of time

The values in these columns were obtained from P'earson's table of the in-
complete gamma function. The last two columns show how the distribu-
tion clusters around the average value as the normal law is approaMched.

For the larger values of n we expected the normal law (3.9- 15) to ibe
approached. Since, for this law the 25, 50, and 75 per cent points are at
m - .675a, m, and m + .6750 we have to a fii.dt aplproxifnation

M2

x.- - (n + 1) - T(fj,--fa)

=2 (m - .675)- = x.% - .675Vx.2 , (3.9-21)

.= X.= + .675x/x.w

This agrees with the table.
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ThiedeM has studied the mean square value of the fluctuations of the
integral

A(t) = IM(r)e-t(1-) dr (3.9-22)

The reading of a hot wire ammeter through which a current I is passing is
proportional to A1(W). a is a constant of the meter. Here we study A(I) by

I- 1 T
20 1 I

I .1 1. I

2, 00 A7 0

- I I
Y.1

:II -- .67

."I I
t 1 at-#-

PPOO3ABILITf DENSITY

(39-2) I~A'%SUMEDI

, a I i .50 67

Fig. 5--Filtered twrmnl oi- sread of energy fluctuation

11( = f t) dr, 1, random, I is noise current.

Y = l".T6/ ,•, .'2 V •S I u/AM0.
fb -f = hand width of filter.

first obtaining its correlation function. This method of approach enables
us to extend Thiede's results

The distributed portion of the power spectrum of A(t) is given by (3.9--
30). When the power spectrum w(f) of I(I) is zero except over the band
f. < f < fb where it is w0 , the power spectrum of A(t) is

2w( Jf-) for 0 <1 < b--f.

and is zero from fb - fA up t, 2f. . The spectrum from 2f. to 2fb is not zero,
and may be obtained from (3.9 34). The mean square fluctuation of .A(t)
is given, in the general case, by (3.9 28) and (3.9 32). For the band pass
case, when (f/ - f 0 )/a is large,

l1(t) - A a
r.II.s. A [2(/ f

16 Rler. ,Vahr. Tek., 1. (1936), Xt-95. This is an excellent article.
"*Note added in proof. 1lh vahin of y2 at 0 shiuld Iw .415 instead of .403.
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We start by setting r = - u which transforms the integral for A(t) into

aU

A(I) = i2( - u)e-a dus (3.9-23)

In order to obtain the correlation function t(r) for . (1) we multiply .1(1)
by AQ(i + r) and average over all the possible currents

T,(7) =A.(-/)A (t+--7)

= c-f " du j7 D e-" d- ave. 1'(t - u)f"(t + r - t)

Just as in (3.9-4) the average in the integrand is the correlation function of
1f2(t), the argument being I + T-- t + U = r + u - t'. From (3.9 7)

it is seen that this is

4o + 24(r + It - V)

where 4(r) is the correlation function of 1(1). 1lence2 9.
('(") - dv e-it °GU(+ + u -e) (3.9-24)

From the integral (3.9--23) for .I(/) it is seen that the average value of
AQ() is

A t = . -- o (3.9-25)
a a

where we have used

4o = ,O(0) = wo ,(f)df = 12

Using this result again, only this time applying it to A1(1), gives

A- I= (t)(0)

A' + 2 f diu f Av e-au-a't 2(u, _ V) (3.9-26)

The double integrals may be transformed by means of the change of
variable it + t- = x, u - r = y. Then (3.9-24) becomes

,l(r) = A' + dy dx + dy dx e" #"(N +y

A' +I- e-+*fp(r + y) + 02(r - y)Idy (3.9-27)
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When we nmake use of the fact that #(y) is an even function of ywe s frora

(3.9 -26), that the mean square fluctuation of A (t) i.
(A(t) - A2 A2() 2-A = 22 7 (Vy) dy (3.9-28)

',(r) may be expressed in tvams of integraLs involving the power spectrnim
w(f) of 1(t). The work starts wish (3.9 24) and is much the same as in
going from (3.9-8) to (3.9--9). The result is

= A! + dfIm dIaw(Ji)w(f?)

cos,,2(f, +2,,- co 2r(f,-- f,),r
S-4+ [2r(f, + fi)p -+ ai_ + 12T(fz - f2)?

It is convenient to define w(-f) for negative frequencies to be equal to
w(f) The integration with respect to f, may then be taken from - w, to
+ co and we get

(r) A' + f d +)0)cos 2r(f, -4 ft) (3.9-29)

.ff 00df W (fl) W( f2) iFr-f -02

The power spectrum W(f) of A(t) may be obtained by integrating *(7):
S

IV(J) = 4 j *(,r) cos 2wfr dv

Let us concern ourselves with the fluctuating portion A (9) - A of A (t).
Its power spectrum W(JJ) is

Wj(J) = 4 f ( (r) - A) cos 2rfr dr

The integration is simplified by using Fourier's integral formula in the form

dL df2 F(f 2) cos 2r(u - f2,r IF(u)

We get

Wo(f) =a2 + 4•1 /,, fp dfdw(f,)i(l + -f) + w(fl)w(-f + fJ)]

-a2 1 , f W ( I w (f - J) df i (3.9-30)•,e + 4?r"f ()o( , I

The simplicity of this result suggests that a simpler derivation may be
found. If we attempt to use the result

Limit 21 S(f) 11
2-.* Lm (2.5-3)
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where S(f) is given by (2.1--2) we find that we need the result
Limit 2f d t J d ie2 "("'i't -1(t 1)l"(t 2)

- f )w(f,)w(/- f,) df (

where f > 0 and I(I) is a noise current with w(f) as its power spectrum.
This may be proved by using (3.9-7) and

fj 4'(r) cos 2rfrdr = w(x)w(f - x) dx

which is given by equation (4C-6) in Appendix 4(C.
An expression for the mean square fluctuation of A(() in terms of w(f) may

be obtained by setting T equal to zero in (3.9-29)
(4(t) -A); =.,,,

-()wf, (3.9-32)
"40 df a2 + 4rr2(t -P f2)

The same result may be obtained by integrating WJ(J), (3.9-30), from 0
to 0:

f df dfiw(f,)w(f -f)(

Although this differs in appearance from (3.9-32) it may be transformed
into that expression by making use of w(-f) = w(f).

Suppose that I(t) is the current through an ideal band pass fiiter so that
w(f) is zero except in the bandf0 < f < f where it is wo. Then, if 3f. > fJ,,

A = W-0 (fb - f.) (3.9-34)

a

2wo(ffb - f. - ) 0 < f <f&b -f f

w(x)w(f- x) dx = w{(f -f 2.) 2f. +< f < fb + f,,

w'(2f,,f :w(fb -- f) fb + f,, _f _2fb

and is zero outside these ranges. The power spectrum WC(f) may be ob-
2 2tained immediately from (3.9-30) by dividing these values by a + 4rf".From (3.9-33)

I(A(t) -A)2 = 2u jw,,'f - -f)d

"",2 + 49rf2

+ WO ~ rfo df~w f0  (f -f df
"" aCO + 47 2f fb+' fa 4 f '2 -
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If an exact answer is desired the integrations may be performed. When we
assume that fA - .f < < fh + f, we may obtain approximations for the last
two integrals.

(A) - A 2) = Wo' 7-i tan-1 24(fb -fa)

[ ra af
a 2? + 4T 2(fb - fa) (A -f)X- log -- ±d( + +r" +1 ±A+ffa

Furthermore, if 21r(fJ - fla is large we have

(AG() -A) 2 = 2fbfa

2a

and the relative r.m.s. fluctuation is

r.m .s. of [ ( -( y - [ A 0f) 
,)]

This result may also be obtained from (3.9-10) and (3.9--11) by assuming
a so small that the integral for A (t) may be broken into a great many in-
tegrals each extending over an interval T. aT is assumed so small that
"C" is substantially constant over each interval.

3.10 DISTRIBUTION OF NoisE PLUS SINE WAVE

Suppose we have a steady sinusoidal current

I,, = 4(t) = P cos (o)P - VP) (3.10-I)

We pick times 11 , t 2 , "'" at random and note the corresponding values of
the current. How are these values distributed? Picking the times at ran-
dom in (3.10-1) is the same, statistically, as holding t constant and picking
the phase angles 'pp at random from the range 0 to 2r. If 1, be regarded as
a random variable defined by the random variable Wp, its characteristic
function is

ave. e -- Io e1 2 coo (soi-v) do

27r J(3.10-2)
= JL(Pz)

and its probability density is

I f+ .sf,,( (P2 - P) -1/2 lip I < P1f to "J(Pz) dz - I T 0 < P (3.10-3)

0t - 11,1l> P

In this case it is simpler to obtain the probability density directly from
(3.10-1) instead of from the characteristic function.
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Now suppose that we have a noise current IN plus a sine wave. By com-
bining our representation (2.8 6) for IN with the idea of e,, being random
mentioned above we are led to the representation

/(s) = I = 4 + !.,.
'I

it
-P Cos W I- ýcp ) + EC,, Cos (0t-~pi, (.10A4)

c"= 2w(f)A/

where ýv, and %a, •- - are imlteireilejat random angles.

If we note I at the random times 11 , t2 * how are the olberved values

distributed? Since 1, and Tv may be regarded as indcljendient random

variables and since the characteristic function for the sum of two such vari-

ables is the product of their characteristic functions we have from (3.1-6)
and (3.10-2)

ave. e i98 = ave. e"e pt + Ni)

=J(I t)( (3.10-3)

which gives the characteristic function of L. The prolability density of I
• 3"Is

I f ? Jo(Pz) dz =v2u4 e (1 P to 1/" dO (3.10-6)

In the same way the two-dimensional probability density of (41, 12),

where I" = i(1) is a sine wave plus noise (3.10-4) and I2 = It + r) is its

value at a constant interval r later, may be shown to be(2 _ 2;)-1/2 f21 B()
(4004 dj exd X [- 24 -2 2) (3.10-7)

where

B(O) = #o(11 - P cos 0)2 + (12 - P cos (0 + Wor))i

- 2,(Ij -- P COs 0)(12 - P COs (0 + wpr))

The characteristic function for 1J and I1 is

ave. e"J"( p (Vrj2 + 0' + 2r Cv os ,,r)

00 (It2 + V2) (3.10-8)
X exp -[ V

17A different derivation of this expression is given by W. R. Bennett, Jour. Acoais. Soc.
A Iner., Vol. 15, p. 165 (Jan. 1944); B.S.T.J., Vol. 23, p. 97 (Jan. 1944).
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Sometimes the distribution of the envelope of

I = P cm p1 + IT (3.10-9)

is of interest. Here we have replaced w, by p and have set p, to zero. By
the envelope we mean R(t) given by

R2(t) = R2 - (P + I,) 2 + I1 (3.10-10)

where I, is the component of Tv "in phase" with cos pt and Is is the com-
ponent "in phase" with sin pt:

I, = c'. cos [(W. - p)t -

I = ��C sin [(W,. - p)t - ýoj

IA = I4 COS pt - I. sin p1

,I = Iý =I 12 ,
IN = =C I 4,0

Since 1, and I. are distributed normally about zero with a variance of
ýo, the probability densities of the variables

x= P+I*

y= Is

"are

ep-(x - F')(2awo 0) -'12 exp - 2¢0

24,o

( 2 -€o)- 1 2 e x p - 2

respectively. Setting

x = RcosO

y = RsinO

and using these distributions shows that the probability of a point (x, y)
lying in the ring R, R + dR is

R•dR ex p  I (R' +1P2 - 2RP cos 0) dO

R dRexp[ T) (3.10-11)

where Io is the Bessel function with imaginary argument.

( ) E 2 n
0(Z)= 22n Il
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and is a talula'ted function. Thus (3. to 11) gives the protbalbilitv density
Of the envClope R.

The average value of Rn may he o•ltaineId by multipilying (3. (1) Il) hy R"
anti integrating from 0I to Ex pa sionll ()f the Bessel function anl term-
wise integration gives

R" = (2#o)"' r + I) C_2 "m ( + 1; 1; ;y2

R (2)"tFQ + I) F - 1; -040 (3.10-12)

where AF1 is a hypergeometric function&. In going from the first line to

the second we have used Kummer's first transformation of this function.
A special case is

k P2 + 2#o (3.10-13)

Wien only noise is present, P = 0 and

11 = (2#o)"er(i) = (3.10-14)

,R2=20o

Before going further with (3.10--11) it is convenient to make the following
change of notation

R dR
R,,, , dv dR I, , a i (3.10-15)

"aI" is the ratio (sine wave amplitude)/(r.m.s. noise current).
Instead of the random variable R we now have the random variable V whose
probability density is

p(v) = v exp + a2 Io(av) (3.10-16)

Curves of p(v) versus v are plotted in Fig. 6 for the values 0, 1, 2, 3, 5 of a.
Curves showing the probability that v is less than a stated amount, i.e., dis-
tribution curves for v, are given in Fig. 7. These curves were obtained by
integrating p(v) numerically. The following useful expression for this
probability has been given by W. R. Bennett in some unpublished work.

p(u) du = exp, Edav) (3.10-17)

"s Curves of this function are given in "Tables of Functions", Jahnke and Erxde (1938),
p. 275, and some of its properties are stated in Appendix 4C.
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This is obtained by integration by parts using

f hl._l(au) da = u ' f.(au)/a

When a-, >> 1 but 1 << a - r, Bennett has shown that (3.10-17)

leads to
pVu) du (v 12 j -- a)]

du exp
ra a- L(3.1-1)

3(a + )- 4V ..
8av(a -- V)I

C..

0 3.

I-.

o I

Fig. 6-Prolability density of envelope R of I(I) - P cos pi + -'N

This formula may also be obtained by putting the asymptotic expansion
(3.10-19) for p(v) in (3.10-17), integrating by parts twice, and neglecting

higher order terms.
When av becomes large we may replace lo(av) by its asymptotic expres-

sion. The expression for p(t') is then

S+ 2exp - a)2.- (3.10-19)
(L2,a 22

Thus when either a becomes large or v is far out on the tail of the probability
density curve, the distribution behaves like a normal law. In terms of the
original quantities, the normal law has an average of P and a standard devia-
tion of 4412* This standard deviation is the same as the standard deviation
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of the instantaneous values of I.w. When av >> 1 and a >> I v - a Jwe may

expand ,the •ocfficient of the exponential term in (3.10-19) in powers of

"'C: j r -. , _

" '. :- - I "- " * -" ..

99. . J I . .. . .

4 -I -[. . ; .. ... . . . . -!

00 - * -
7c .. . . .. J

V t
I•. . . . . . . . - -_

t 5 -,- .. . ..-.. . ....... .

I 30

t-

U S I

40 - -.- i I-
I. I I

* I

.1? 4 .

O.O. - nu•i--I ,

0,0 -- -- .... - -

]:ig. -Ilistrlii~tinn functiona(l envelope R •) ()=P cos pt + I':

(v -- a)/a. Integrating this expansion terrnwise gives, wheti terms o•f magni-

tudle less than a-' are neglected,

p(u) du I + -I

2 2 N/2

a ¶ + (V2 a) [(V ,aj2
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When I consists of two sine waves plus noise

I = Pcus pi + Qsin qit + Im, (3.10-20)

where the radian frequencies p and q are incommensurable, the probability
density of the envelope R is

R rJo(Rr)Jo(Pr)Jo(Qr)e-rh12 dr (3.10-21)

where •o is IN . When Q is zero the integral may be evaluated to give
(3.10-11). When both P and Q are zero the probability density for R
when only noise is present is obtained. If there are three sine waves instead
of two then another Bessel function must be placed in the integrand, and
so on. To define R it is convenient to think of the noise as being confined
to a relatively narrow band and the frequencies of the sine waves lying
within, or close to, this band. As in equations (3.7--2) to (3.7-4), we refer
all terms to a representative mid-band frequency , = w,,2r by using
equations of the type

COs p1 = cos [(p - W.)t + w,,]

= cos (p - a,)it cos caj - sin (p - ow,)t sin wj.

In this way we obtain

V - A cos uW - B sin wt = R cos (w.1 + 0) (3.10-22)

where A and B are relatively slowly varying functions of t given by

A = P cos (p - w..) + Q cos (q - Wo.)!

+ E c. cos (o.,! - - q')

B = P sin (p - wm)t + Q sin (q -- w,,)t (3.10-23)

+ E c. sin (w.et - Wit -- Io)
I'

and

R2 = A' + B2, R > 0(31-4

tan e = B/A (3.10-24)

As might be expected, (3.10-21) is closely associated with the problem
of random flights and may be obtained from Kluyver's result" by assuming

' G. X. Watson, "Theory of Bessel Functions" (Cambridge, 1922), p. 420.
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the noise to correspond to a very large number of very small random dis-
placements.

Another way of deriving (3.10-21) is to assume (p - win)!, (q -

Vi, f2, *. are independent random angles. The characteristic function
of A, B is

ave. A+D Jo(Pv +

The probability density of A, B is

du dv -tluA--ltu ave. /uA~fvS

When the change of variables

A = RcosO u = r cost,

B = Rsin0 t, = rsinp

is made the integration with respect to p may be performed. The double
integral becomes

f rJo(Pr)Jo(Qr)Jo(Rr)e °'' dv

This leads directly to (3.10-21) when we observe that dAdB = RdRdO.
Incidentally, if

I = Q(1 + k cos pi) cos q1 + i'N

in which p < < q, similar considerations show that ¶he probability density
of 1? is

orris
S dat rJd~~o('jlQv(1 +I k¢ cos a)]&-•i2)r 2 dr

when to is taken to be q. The integration with respect to r may be per-
formed. This relation is closely connected with (3.10-11).

Returning now to the case in which I is the sum of two sine waves plus
noise, we may show from (3.10-21) and

fo R"+l Jo(Rr) dR e2' ( 0)
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that the average value of R" is, when - 2 < re (n) < -

2 t1.rJP1 + U) D
I? -I'- J,(Ir)Jo(Qr)eTjOrIZ dr

= (20 n)(" (3.10-25)

=2 )20,,(-0 k )k! - m! 1

It appears very probable tha t this result could be extended, by analytic
continuation, to positive integer values of ti. We have used tile notation

(a) 0 = , (&)j = -( +rI ... (a-+-k -- )

ip, qC (3.10-26)

and have denoted the Legendrw piolynomial by Pk(-). rhle series converge
for all values of P, Q, and 4, and terminate when n is an even positive integer.

When x or y, or both, are large in comparison with unity we may use the
integral for RX to obtain the asymptotic expansion, assuming Q < P so
that y < x,

klxi -2 F 1 (k -¶ 2 ; k;k (3.10-27)

When it is an even positive inte-ger this series terminates and gives the same
expression as (3.10-25). Whet i as is an odd integer the 2F' may be expressed
in terms of the complete ellipetic functions E and K of modulus y' K1-X1:

AF --- ,-; 1 ; y) -4E- - 21- K
2F1 , x 7r T((3 10 28

2F, .-,; 1;) = 2 K~r 1-

The higher terms may be corn puted from

a(, -_ Z)22Ft(a + 1, a + 1; I;z ) = (2a - I)(1 + z)2Fl(r, a; I; z.)

+-0(1 - a)hF(a - 1, a - 1; 1; z) (3.10-29)
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which is a special case of

ab((y + 1)(1 - zY)2 F1 (a + 1, b + 1;c;z;) It , 2F(a, b; c; z)

- (y - 1))(c - a)(c - b).F 1(a - 1, b - 1;c; z) (3.10.-30)

where -y.= r - a - b and

A -(.2 1 ii + (I - z)[(y - 1)(c - b)(b - 1) + (y + 11)a(c - a -

Although this expresion (Ioes not show it, A is reallv symmetrical in a

and b. A svnmmetricail form nimv he obtained bv u.sing the expression ob-
tained by putting z -7 0 in (3.14 -301).

3.11 SHOT EFFECrT REPRESENTATION

In most oi the work in this part the representatitns (2.9--1) or (2.. 8 -6
have been used a!- a starting point. flere we point out that the shot effect
.. prcsc.. ta.ti.,;... u.•it., 1  i. !L:tlma , Io,, t.sel as a startint point.

For example, sUl•pose we wish to find the two dimntCIsibfal distribution oi
1(1) and JM + 71 discussed in Section 3.2. 'This is a special case of the distri-
bution of the two variables

() F (t -t)

wvhere we now assume

FG0 ) dt = f G() di = 0 (3.11 2).

in order that the average values of I and J may be zero. In fact, to get
I(t + r) from J.(t. we set G(I equal to F(t + r).

The distribution of I and J may be obtained in much the same manner
as was the distribution of I alone in section 1.A. The characteristic funt-
tion of the distribution is

.(u, ') = ave. e"'Z1ivj

- exp +0f * iuF (tJ - i (3.11-3)

where v is the expected number of events (electrom arrivals in the shot effect)
per second. T'he probability density of I and J is

t- - du 4 dv e&'"'"f(u, v) (3.11-4)
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The semi-invariants Xn are given by the generating function

log± fluni)iE (iuf,(iv), + of (irs?, (jp)kjIog f(u, v) = mat- m,.n!

and are +-0
X.,n = r(o)G"() di (3.11-5)

As P-* x the distribution of land J approaches a two dimensional normal
law. The a•jrtixiniati~in to this normal law may be obtained in much the
same manner as in section 1.6. From our assumption (3.11-2) it follows
that ¾zo and X01 are zero. From the relation between the second moments
and semi-invariants X, we have

~i~ 2o x 10v F2 (1) d,IAI = A20 + 1\10 = v F()d

A12 = X1, + X),0oot f FQ)G(t) di (3.11-6)

U22 = X02 + XOI = v U(2 $) d,

where the notation in the subscripts of the p's differs from that of the V's,
the change being made to bring it in line with sections 2.9 and 2.10 so that
we may write down the normal distribution at once.

The formulas (3.11-6) are closely related to Rowland's generalization of
Campbell's theorem mentioned just below equation (1.5-9).
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NOISE THROUGH N )N-LINEAR DEVICES

4.0 1IN1 RODUCTION

We shall consider two problems which concern noise passing through
detectors or othler nuno-linear devices. The first deals with the statistical
properties of the output of a non-linear device, that is, with its average
value, its fluctuation about this average and so on. The second problem
may be stated more definitely: Given a non-linear device and an input
consisting of noise alone, or of noise plus a signal. What is the power
spectrum of the output?

Tnere does not seem to be much published material on the first problem.
However, from conversation with other people, I have learned that it has
been studied independently ly several investigators. The same is probably
true of the second problem although here the published material is somewhat
more plentiful. This makes it difficult to assign credit where credit is (tue.

Much of the material given here had its origin in discussions with friends,
especially with W. I. Bennett, J. 1I. Van Vleck, and David Middleton.
Help was obtained from th1 recent paper3 7 by Bennett, and also from the
manuscript of at forthcoming paper by Middleton.40

4.1 Low FREQUENCY OUTPUT OF A SQUARE LAW DEvICE

Let the output current I of the device be related to the input voltage V by

I = aV 2  (4.1-1)

where a is a constant. When the power spectrum of V is confined to a
relatively narrow band, the power spectrum of I consists of two portions.
One portion clusters around twice the mid-band frequency of V and the
other around zero frequency. We are interested in the low frequency
portion. The current corresponding to this portion will be denoted by
jIt, and is the current which woihld flow if a low pass filter were inserted
in the output to remove the upper portion of the spectrum. It is convenient
to divide III into two components:

Ii? = Idd + It, (4.1-2)

$7 Loc. cit. (Section 3.10).
40 Cruft Laboratory and the Research Laboratory of Physics, Harvard University,

Cambridge, Mass. In the following sections references to Bennett's paper and Middle-
ton's manuscript are made by simply giving the authors' names.
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where the subscripts stand for "total low" frequency, "direct current."
and "low frequency," respectively. We have

Id, = average Id = Lf (4.1-3)

Mean Square I, = average (be - Id) = lt- Ili

Probably the simplest method of obtaining Id, is to square the given ex-
pression for V and pick out the terms independent of time. Thus if

V = P Cos Pt + Q cos qi + 1"w (4.1-4)

we have

Ide= a + Q + (4

lgf may also be obtained by picking out the low frequency terms. lhow-
ever, here we wish to use the square law device, and the linear rectifier in the
next section, to illustrate a general method of dealing with the statistical
properties of the output Of a non-linear device when the input voltage is
restricted to a relatively narrow band.

If none of the low frequency spectrum is removed by filters,

R2ld = t 2"(4.1-6)

where R is the envelope of I'. The probability density and the statistical
properties of li may he derived from this relation when the distribution
function uf R is known." hlefore discussing these properties we shall
establish (4.1--6).

Equation (4.1--6) is a special case of a more general result establishedl
in Section 4.3. However, its truth may be seen by taking the example

i P 1Cos P1 + 0 Cos eq + 'N (4.1-4)

wheref, = p/ 2 r andf, q,.27r lic within, or close to, the banl of the noise
voltage U'N,.

By using formulas of the t)ype

cos pt = cos [(p - W,8,)t + W,..
(4.1-7)

= cos (p - W,,)t cos wct - sin (p - w,)t sill W4t

41 \lhJn part of thc lhetcqit--:rv spectrum is removed, the problem becomes much

more difficult. L, may le obtained as above, but to get Aly' it is necessary to first deter-
mine the power spectrum of I (Section 4.3) and then integrate over the approjpriate pot-

tion of it. Concerning the distrihution of lU . our present knowledge tells us only that it
lies betwieen the nne given by (4.1-f) and the normal law which it approaches when only
a narrow pnrtion of the low iruij.c;icy spectrum is passed by the audio frequency filter
kSvction 4.3j.
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we may refer all terms to the mIl-band frequency..4 = w.,/2r, as is (lone
in equations (3.7- 2) to (3.7 4).

In this Way we obtain

I' -- .1 cos wrnt - B sin wo,t = R cos (win! ± 0), (4.1-+)

where .1 and B are relatively slowly varying functions of t given bh

.A = P cos (p - w,.,)t + Q cos (q - w•)t + Z co ens (,.t - ,t -

B = 1) sin (p -- w,.)t + 9 sin (q - wt + E c,, sin (w,.t - .wt -I i)
n

and

R = 2 + 2 , R > 0
(4.1-9)

tan 0 Bi.4.

"Tbis dckinition of R has also been givte in equations (3.10 22, 23, 24).
The Cnvei(lope o1 V is R atn the output current is

= al) B + I cos (2cw,. I + 20) (4.1-10)

Since R is a slowly varying function of time, so is R2. The power spectrum
of R2 is c(nfined to frequencies much lower than 2f,,, anti consequently tie
power spectrum of le cs (2wdj +- 20) is clustered around 2f,, . TIlus the
only term in I contributing to the low frequency output is aR". 2 which is
what we wished to show.

We now return to the statistical properties of Ijt. First, consider the
case in which V consists of noi:we only, V =- I's, so that the probability
density of the envelolpe R is

S-R2 24, (3.7-10).-- -6 :

where

"40 = [rms V1-]2 = (4.1-11)
Hence

aR-I2

0 00aoR2 R e -10gi¢od

(%KR

go 2
( f 4 0 d R -- I d , ( 4 .1 - 1 2 )

0
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Second, consider the case in which

V =- VN + P cos P1 (4.1-13)

where p/2• lies near the noise band of -, . The probalbility density of the
envelope R is

- exp [- R to (3.10-11)

From this and equations (3.10 12), (3.10 13), we find

Id, = ... -i2 = 4 •0 -1- (4 .1 -12
2 2- (4.1-14)

It = aQ [22 + 2P2o + ']

'T , = a'14o + p2l•o (k.l-15)
L2.V

In (4.1-14) 4,o is the mean square value of VN and ?/2 is the mean
square value of the signal. These two equations show that I'd and the
rms value of It are independent of the distribution of the noise power
spectrum in VN as long as the input i is confined to a relatively narrow band.
In other words, although this distribution (toes affect the power spectrum
of the output, it does not affect the d.c. and rms rTg when Vo and P are given.
That the same is also true for a large class of non-linear devices was first
pointed out by Middleton (see end of Section 4.9).

When the voltage is"

V = Vt + P cos pt + Q cos qt, (4.1-4)

p # q, we obtain from equation (3.10 -25)
do (, ,

Ida k"2 = a + 2+

2

it = ; R(4.1-16)

These results are special cases, obtained by assuming no audio frequency filter, of
formulas given by F. C. Williams, Jour. In,. of E. E., 80 (1937), 218-226. Williams also
discusses the response of a linear rectifier to (4.1-4) when P >> Q + V.. An account
of Williams' work is given by E. B. Moullin, "Spontaneous Fluctuations of Voltage,"
Oxford (1938), Chap. 7.
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4.2 Low FREQu1.':Cv OUTPUT OF" A LINE-AR R1CTIFIKTR

In the case of the linear rectifier

{ = Ia I, o ' >o (4.2-1)

the low frequency output current, assuming no audio frequency filter, is

lit -= (4.2-2)

This formula, like its analogue (4.1- 6) for the square law device, assumes
that the applied signal and noise lie within a relatively narrow band. It
may be used to compute the probability density and statistical properties
of Iita when the corresponding information regarding tie envelope R of the
applied voltage is known.

The truth of (41.9-91 rmay he ceen y rtondidering the outtu .I- Tt con-
anF tat -- -- - - - 11 -- -

sists of the positive halves of the oscillations of aV. The envelope of I is
the same as that of aV. However, the area under the loops of I is only about
1/ir of the area under aR, this being the ratio of the area under a loop of
sin x to the area of a rectangle of unit height and length 2 1r. From the
low frequency point of view these loops of I merge into a current which
varies as aR/r.

When V is a sine wave plus noise,

V = VN + P cos p1 (4.1-13)

the average value of he is4

tic a-RA = a I-- lpI11 Fr 11 k -ir) 16)(4.2-3)

- c [1 + )o(0 +x (01 423

where lo, I. are Bessel functions of imaginary argument and

P2 ave. sine wave power (4.2-4)
200 ave. noise power

03 This result was discovered independently by several investigators, among whom we
may mention W. IR. Bennett and D. 0. North. The latter hasapplied it to noise measure-
ment work. Ile has found thet the diode detector, when adapted to noLse metering, is a
great improvement over the thermocouple, and has used noise meters of this type satis-
factorily since 1940. See D. 0. North, "The Modification of Noise by Certain Non-
Linear Devices", Paper read before I.R.E., Jan. 28, 1944.
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¾ being the average value of 1* . Equation (4.2 -3) follows from the
formulas (3.10 12) atld (413 9). When x is large the asymptotic expansion
(413-3) of the 1F, gives

I,• - c,1' #€0 + +k
Id+21' +P + (4.2-5)

Similarly, the mean squtare value of Id is
2 2

P R- (1,2 + 2¾o) (4.2-6)
. ir.

and the mean square value "f thc low frequency Current IJ,, excluding the
d.c., is given by

if! -- i~t- IA,

When x is large we have
2i 1� -r•1""

, H 2 . = -, (4.2-7)7r-2P2 7r x"'

and when x - O,

t/-- 7r2 V/0 2 -- 7 (4.2-8)

Curves for Id, are given in Figures 1. 2 and 3 of Bennett's paper. Ile

also gives curves, in Fig. 4, showing I4¢ versus x. These show that the
effect of the higher order modulation terms is small when It, is computed
by adding low frequency modulation products.

When 1' consists of two sine waves plus noise,

V = VN + P cos pt + Q cos qt, (4.1-4)

the average value of Il is, from (3.10-25), a sort of double IF, function:

, ( --x )k(-)a -~~~~ ( _ XV2 x '4) +ir~( (2 k0)0kkm (4.2-9)
"= + R \2r )k km

2 ,.. k-0 k! k! -x) '

where

x p, 2 Y =2 P;.(z) = Legendre polynomial (4.2-10)

If x is large and y < x, we have from (3.10 27) the asymptotic expression

pde&KQL(_Dk 2F1 k k 1
I k-0 klxk 2 ) (.-1
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The 2F1 may l( expressed in terms (if the complete elliptic functions E and
K of modulus v1tV T hus

2F 2 ( ;1i; Y= K

and the higher terms may be creMuted from the recurrence relation
(3.10-29). The first term, k = 0, in (4.2- 11) gives Id, when the noise is
absent."4

The mean square value of I, is

2 2-T a a :2 I
72 R2 = 7r2 [20a + 1 + Q'1 (4.2-14)

From this expression and our expression for l& , the rms value oif the low
frequency current, It , excluding the d.c., may he computed. For example,
when the noise is small,

[p 2 [- + Q2 _ - (1)2v (- 2 - 1 ;.;y7

+)] (4.2-15)

The term independent of 4,o gives the mean square low frequency current
in the absence of noise. As () goes to zero (4.2 15) apjproa lies the leading
term in (4.2-7), as it should. When P = Q our formula breaks down and
it appears that we need the asymptotic behavior o0 5

27r klJ (-x)j

In view of the questionable nature of the derivation given in Section 3.10
of equations (4.2- 9) and (4.2--11) it was thought that a numerical check on
their equivalence would be worth while. Accordingly, the values x = 4,
y = 3 were used in the second series of (4.2 -9). It was found that tile
largest term (about 130) in the summation occurred at k = 11. In all, 24
ternis were taken. The result obtained was

.. 2.5502

"See W. R. Bennett, B.S.T.J., Vol. 12 (1933), 228-243.
IThis may be done by the methnd given by W. B. Ford, A.s;ymptotic Developiments,

Univ. of Mich. Press (1936), Chap. V[.
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For the same values of x and y the asymptotic series (4.2-11) gave

2.40 + 0.171 + .075 + 0.52 +

If we stop just before the smallest term we get 2.57 for the sum. if we
include the smallest term we get 2.65. This agreement indicates that
(4.2-11) is actually the asymptotic expansion of (4.2-9).

When the voltage is of the form

V Q(1 + k cos pl) cos qt + VN

we may use

2 ( n( + (4.2-16)

!;a -;1;--Y(l +k CoOS )2 dO

where R is the envelope with respect to the frequency q/2r and y is given
by (4.2-10). The integral may be evaluated by writing F, as a power
series and integrating termwise using the result

' r (I + k cos 0)t cos #O dO

(4.2-17)
(-)(_k),m [m -- t , t- V+ 1 1; k2
2--L . .. + 1J 2

where m is a non-negative integer, I any number,

(a). = a(a + 1)..- (a + in - 1), (a)o = 1, and (0)0 = 1.

The integral may also be evaluated in terms of the asso'iated Legendre
function.

By applying the methods of Section 3.10 to (4.2- -16) we are led to

-- = Q2(f + 0 + 2#o

(4.2-18)

Q • -• - F(s - 4, s; 1; k2)0-0 sly y2

where the asymptotic series holds when i is very large and k is not too close
to unity. These expressions give

(2 +t 4,42 - (I - k -- + . (4.2-19)
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The reader might be tempted to associate the coefficient of Wpo in (4.2 19)
with the continuous portion of the out)ut power spectrum. However, this
would not be correct. It appears that the principal contribution of the

continuous portion of the power spectrum to Iýf is a2#o/72, just as in (4.2-7)
when k is zero. The difference between this and the corresponding term
in (4.2-19) seems to arise from the fact that the amplitude of the recovered
signal is not exactly aQk/r but is modified by the presence of the noise.
This general type of behavior might be expected on physical grounds since

changing P, say doubling it, in (4.2--7) does not appreciably affect the I12
in (4.2-7) (which is due entirely to the continuous portion of the noise
spectrum). The modulating wave may be regarded as slowly making
changes of this sort in P.

4.3 SoMr STATISTICAL PROPERTIES OF THE OUTPUT OF A GENERAL

NON-LINEAR DEvicE

Our general problem is this: Given a non-linear device whose output I is
related to its input V by the relation

I L F iu)e1 v du (4A-1)

which is discussed in Appendix 4A. Let the input V contain noise in addi-
tion to the signal. Choose some frequency band in the output for study.
What are the statistical properties of the current flowing in this band?

It seems to be difficult to handle this general problem. However, it
appears that the two following results are true.

1. As the output band is chosen narrower and narrower the statistical
properties of the corresponding current approach those of the random noise
current discussed in Part III (provided no signal harmonic lies within the
band). In particular, the instantaneous current values are distributed
normally.

2. When the input V is confined to a relatively narrow band the power
spectrum of the output I is clustered around the 0 th (d.c.), 1st, 2nd, etc.
harmonics of the midband frequency of 1'. The low frequency output in-
cluding the d.c. is

lot = Ao(R) f F(iu)Jo(uR) du (4.3-11)

where R is the envelope of V.
The envelope of the zith harmonic of the output, when n > 0, is

A,(R) I f F(iu)J,(uR) du (4.3-1)
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The mathematical statement is

I -, A. (R) cos (no,,j + nO) (4.3-9)
n-0

where fA w•/(2r) is the representative mid-band frequency of V and 0
is a relatively slowly varying phase angle. The results of Sections 4.1
and 4.2 are special cases of this.

Middleton's result that the noise power in each of the output bands (in

the entire band corresponding to a given harmonic) depends only on VM2 =
4,o and not on th e specctrutm of Vn , where Vv, is the noise voltage component
of V, may also be obtained from (4.3-9). We note that the total power
in the nth band depends only on the mean square value of its envelope
A.(R), and that the probability density of the envelope R of the input in-
volves IM only through V0.

The argument we shall use in discussing the first result is not very satis-
factory. It runs as follows. The output current I may be divided into two
parts. One consists of sinusoidal terms due to the signal. The other con-
sists of noise. We shall be concerned only with the latter which we shall
call IN. The correlation between two values of 'N separated by an interval
of time approaches zero as the interval becomes large. Let 7 be an interval
long enough to ensure that the two values of IN are substantially
independent. Choose an interval of time T long enough to contain many
intervals of length r. Expand Im as a Fourier series over this interval.
We have

a= [a+tF cos 2Tn + b. sin
2 J TJ(4.3-2)2 #-

a,, - ib . = ' fr , 2 mn1/ 1 ) J.

Let the band chosen for study befo - tofu + 2 and let

T (o-) nr7'(o +q)=n 2  (4.3-3)

where nl and n2 are integers. The number of components in the band is
(ng - n"). We suppose # is such that this is small in comparison with T/r.

The output of the band is

JA = E a. cos-- I + b sin ._ .j (4.3-4)
n L T T2
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where

a,,"xt,,T !all 2ir aT IatJJ ~ jga,, e e IN(T) dt

1 I + ,2 +l, + 12 _joi 7,- (n -fA1 T)
9 2

We c-hIooe the h•ild so narrow that

2-- -it I<< T/r or f3r << 1 (4.3 6)

This et'na bles us to write allproxifalcly

a - lb, = i2 " 1r( e (njT)- J.r (C 1 do
r-1 T 4,- 1)

r = Tit, T being chosen to make r1 an integer. SupIpse we (to this for
a large number of intervals of length 7'. Then IN(t) will differ from interval
to interval. The set of integrals for r = I gives us an array of values which
we regard as defining the distribution of at complex raii'lom variable, say
x, . Similarly the set id integrals for r = 2 defines the distribution of a
secC(nd randomn varial.c X2 , and SM) on to X1 1 . Because we have chosen r
so large that Lv(1) in any one integral is practically independent (if its values
in the other integrals we may say that x. , .1, .r, 1 are independent.

We have

rl

7,t1- ibt,, 1  - 6 --t ((nlf)-fO)fr Xr
r-1

f-i

(',.I+I~ ~ -- },l, = E 1'2r((n t'+1/T)-'f O)ir

r!

t _• - ib" --- E c -,1'r((" ./ T) r V x r

and if 12 - it << rj ias was assumed in (4.3 6), we may apply the central
limit theorem to show that a,, I b,L I d,,f,.., , , b,.., tend to become in-
dependent andi normally distributed aboult zero as utc let the btand width
o$ -) and 7' -, x (and hence ri - • o- ) in such at way as to keep n2 - Y1

lixed. In this woprk we make u.•e of the fact that I..(t) is such that the real
and imaginary parts of x, .-. -Ar all have the same average and standard
(ieviationi. It is convenlient to assumefJo? is an integer.

Thus as the band width 0 approathes zero the ,band ,utiput .1 % given by
(4.3-4) may be reJprc-cnted in the .atme way, namely as (2.8 1. as wvas the
random noise current studied in Part 111. 1lence A. tend- to) have the
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same properties as the random noise current studied there. For example,
the distrihution of JN tends towards a normal law. In our discussion we
had to assume that #r <K 1. If the voltage I' appl:ied to the non-linear
device is confined to a relatively narrow frequency band, say fb - f.,, it

appears that the interval r (clhosen above so that [(0) and 1(t + r) are sub-
stantially independent) may be taken to be of the order of 1/(fb - f.).
In this case JA tends to behave like a random noise current if 0/(fb - f.) is
much smaller than unity.

We now turn our attention to the second statement made at the begin-
ning of this section. Let the applied voltage be confined to a relatively
narrow band so that it mity le rit-lpatnted by equation (4.1-8) of Section
4.1,

V = R cos (co + 0), R > 0, (4.1-8)

where A = w•,/(2r) is some representative frequency within the band
and R and 0 are functions of time which vary slowly in comparison with
cos wj. We call R the envelope of V.

From equation (4A 1)

I A7 F(iu)e, 1o (W,,,U+9) du (4.3-7)

We expand the integrand by means of
CO

Sft C = - S i cos nipJ.(x) (4,3-8)

where eo is I and c. is 2 when n > 0 and J0 (x) is a Bessel function.
Thus

I = 5 A.(R) cos (n,,,t + nO) (4.3-9)

where

A4(R) = f, - f F(iu)J,(uR) du (4.3-10)

Since R is a relatively slowly varying function of time we expect the
same to be true of A ,(R), at least for moderately small values of n. Thus
from (4.3-9) we see that the power spectrum of r will consist of a suc-
cession of bands, the nih band being clustered around the frequency nfj,.
If we eliminate all of the bands except the nth by means of a filter we
see that the output will have the envelope A ,(R) when n 2; 1. Taking
n to be zero, shows that the low frequency output is simply

A(R) F(iu)Jo(uR) du (4.3-11)
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Taking n to be one shows that the band around Ai. is given by

AI(R) V (4.3-12)
R

The statistical properties of the low frequency output and of the en-
velopes of the output bands may be obtained from those of R. For ex-
ample, the 9robability density of A,(R) is of the form

p(R) dAn(R) (4.3-13)
/R dR

where p(R) is the probability density of P. In this expression R is con-
sidered as a function of A•.

It should be noted that we have been assuming that all of the band
surrounding the harmonic frequency nf.. is taken. When we take only a
portion of it, presumably the statistical properties will tend to approach
those of a random noise current in accordance with the first statement made
at the beginning of this section.

When we apply (4.3-A11) to the square law device we have

F(iu) 20f
(iu)

A oR) -2a ~(O+) Jo~cR) d

AR)= a - j

2

When we apply (4.3-11) to the linear rectifier:

F(im) af
F~suj

ct 14." .o(uR) d. = aR
Ao(R) = -f'- - W du

where the path of integration passes under the origin. These two results
agree with those obtained in Section 4.1 and 4.2 from simple considerations.
As a final example we find the low frequency output of a biased linear
rectifier in terms of the envelope R of the applied voltage. From the table
of F(iu) given in Appendix 4A we see that F(iu) corresponding to

1=0, V<B

I= V--B, V>B
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is

F (iu ) e= u

Consequently, the low frequency output is

Ao() -1 1 0e-'uJo(uR)u-2 duA0(dR) = -XI

where the path of integration is indented downwards at the origin. When
B > R the value of the integral is zero since then the path of integration
may be closed in the lower half plane by an infinite semi-circle This value

also follows at once from the physics of the problem. When - R < B < R
we may integrate by parts and get

A_(R e-('O[iBJo(UR) + RJz(uR)lu-I du

- B + [f B sin uBJo(uR) + R cos uBJz(uR)]u-' du

(4.3-14)
B B B 1

arc sin + - B -2

B3 R 4 ifl - < <- -- I+-- - ; -R < B < R
2P 22\R)

This hypergeometric function turns up again in equation (4.7-6). Also
in the range -R < B < R,

dAo _ 1 I B

d 7r +/Ik2

When B is negative and R < -B, the path of integration may be closed
by an infinite semicircle in the upper half plane and the value of the integral
is proportional to the residue of the pole at the origin:

Ao(R) 2ri -- )-i)
"- - ' ) -B

Thus, to summarize, the low frequency output for our linear rectifier is,
for B > 0, (R is always positive)

Ao(R) = C, R < B
Ao(R) = B +B B 1 (4.3-15)

-. + arc sin ± VA/ Ji- , B C R2 71r
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and for 14 < 0 it is

Aa(R) B II, R <I131
IBI j1l '' B ~ (4.3t:1 ro)

,.,(R) +! 2 + . arc sin R + R .-- Rit ' ,2 r R1?

where the arc sines lie between I and v '2.. 10(Rk and] its lirst fterivative
with respect to R are continuous.

From (4.3-15), the 41.c. output current is, for B > 0,si =fl[i ±'* .B ' ....
1d, J L2 -arc sin ii2 Br:- p(R. dR (4.3-15)

where p(R) is the prolbability density of the envelo," of 1hr iniut I, e.g.,
p(R) is of the form (3.7--10) for noise alone, and of the form A.10 11) for
noise plus a sine wave. Similarly, the rms value of the low frequency
current I , excluding d.c., may be comJuted from

where, if B > 0,

E 13, -- r2 -arc sin + 1/Vx - B] p(R) dR (4.3-16)

If V consists of a sine wave of anplitude P plus noise I'V , so it may he
represented as (4.1 13), and if P >> rms I' , the distribution of R is
approximately normal. If, in addition, P - B >> rms VV > 0, (4.3-15),
(4.3-16), and (3.10-19) lead to the zipproximations

iI- B B B I - -+

-do + arc sin P + 2r'P"2- B2
B P W+ o
2 + 2rP(4.3-17)

The second expression for Id. assumes 1' >> B. When B = 0, these re-
duce to the first terms of (4.2-5) and (4.2- 7). lBy using a different
method Middleton has obtained a more precise form of this result.

Incidentally, for a given applied voltage, Ida(+) for a positive bhi; I B
is related to 'd.(-) for a negative bias - I B I by

'do--) B + !d.(+) (4.318)

Also r.m.s. !t,(+) is equal to r.m.s. Its(-). Equation (4.3 -18) follows
from a physical argument based on the areas underneath a curve of I for
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the two cases. Both of the above relations follow from formulas given by
Middleton when V is the sum of a sine wave plus noise. They may also 1e
derived from (4.3-215) and (4.3 16).

4.4 OUTrrU POWER SwcmruM

The remainder of Part IV will be concerned with methods of solving tlhe
following problem: Given a tnon-linear device and an input voltage con-
sisting of noise alone or of a signal plus noise. What is the power spectrum
of the output?

In some ways the answer to this lproblem gives us less information thal:
the methods discussed in the first three sections. For example, beyond
giving the rms value, it tells us very little about the probability density of
the current corresponding to a given frequency band of the output. On
the other hand, this rms value may be found (by integrating the power
spectrum) for any band we choosee to study. The methods described earlier
depended on the input being confined to a relatively narrow band and gave
information regarding only the entire band corresponding to a given har-
monic (0th, 1st, 2nd, etc.) of the input. There was no way to study the
output when part of a band was eliminated by filters except by obtaining
the power spectrum of some function of the envelope.

At present there appear to be two general methods available for the
determination of the output power spectrum each with its own advantages
and disadvantages. First there is the direct method which has been used
by W. R. Bennett*, F. C. Williams"*, J. R. Ragazzini" and others. The
noise is represented as the sum of a finite number of sinusoidal components.
The typical modulation product is computed and the output power spectrum
is obtained by considering the density and amplitude of these products.
The chief advantage of this method lies in its close relation to the known
theory of modulation in non-linear circuits. Generally, the lower order
modulation products are the only ones which contribute significantly to the
output power and when they are known, the problem is well along towards
solution. The main disadvantage is the labor of counting the modulation
products falling in a given interval. However, Bennett has developed a
method for doing thisY'

The fundamental idea of the second method is to obtain the correlation
function for the output current. From this the output power spectrum may
be obtained by Fourier's transform. The correlation function method and
its variations are of more recent origin than the direct method. They have

* Cited in Section 4.0. Also much of h writer's work on interference in broad band
communication systems may be carried over to noise theory. without any change in the
methods used.

"* Cited in Section 4.1.
"Proc. I.R.E. Vol. 30, pp. 277-288 (June 1942), "The Effect of Fluctuation Voltages

on the Linear Detector."
'T B.S.TJ., Vol. 19 (1940), pp. 587-610, Appendix B.
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been discovered independently and at about the same time, by several
workers. In a paper read before the I.R.E., Jan. 28, 1944, D. 0. North
described results obtained by using the correlation, function. J. 11. Van
Vieck and D. Middleton have been using the two variations of the method
which we shall describe in Sections 4.7 and 4.8, since early in 1943. A
primitive form of the method of Section 4.8 had been used by A. D. Fowler
and the writer in some unpublished material written in 1942. Recently,
I have learned that a method similar to the one used by Fowler and myself
had already been used by Kurt Frinz in 1941."

The correlation function method avoids the problem of counting the
modulation products. However, in some cases it becomes rather unwieldy.
P'robably it is best to have both methods in mind when investigating any
particular problem. The direct method will be illustrated by applying it
to the square law detector. Two approaches to the correlation function
method will then be described and applied to examples.

4.5 NoIn. TnRouGi SQUARE LAW-DEVICE

Probably the most direct method of obtaining the power spectrum I'(f)
of 1, where

I = al", (4.1.4)

V being a noise voltage, is to square the expression
M

V = = cos ( t- (2.8-6)
1

in which c! is 2ui(f.)Af, ca. = 2rf,,,, ,f =:Af and , o2, "v. are random
phase angles.

Considerable simplification of the algebra results when we replace the
representation (2.8-6) by

Vj, = f (4.5-1)

Here we have added a term co/2 so as to not have any gaps in the summation
and have introduced the definitions

C-n- Cm,

-= -- , (4.5-2)

a = 2rAf
44 "Die tlhertragung von Rauschspannung Miber den linearen Gleichrichter," IlockJr.

it. F.lektroaktst., June 1941. Other articles by FrAnz are (I am indebted to Dr. North
for the following references) "Beitrage zur Berechnung des Verhaltwisses vo Signal
spannung zus Rauschspannung am Ausgang von Empflingern". E.N.T., 17, 215, 1941) and
19, 285, 1942. "Die Amplituden von Geriuschspannungen", E.N.'.", 19. 166, 1942.
The May 1944 (p. 237), issue of the Wireless Engineer contains an abstract of "The In-
fluence of Carrier Waves on the Noise on the Far Side of Amplitude-Limiters and Linear
Rectifiers" by Fiinz and Vellat, E.Y..T., Vol. 20, pp. 183-189 (Aug. 1943).

131



Squaring (4.5-1) gives the double series"

1~ +4 0
v= E E celm C,. e oat

4~ -00

1 ~ ~ ' 43f (-ivn-t- if&
Ck-J Csf..

4 •-€ nm.a.

Suppose we wish to consider the component of U%2 of frequencyfk - kAf.
It is seen to be

! +cc
AL cos (wi - 40 = 1 , c,_,, c,, cos (kat - - €,.) (4.5-3)

The power spectrum Il'(f of I at frequency fi. is a* times the coefficient of
Ai in the mean square value of (4.5 -3 where the average is taken over the
&'s. Thus

2 +cc 4+a

Tl'(fk)A = E 4aC'('.C.mCA-.n.
40 -s-cc*

X ave. cos (kal --- -. ) cos (ka - Wk-_m - ,,)

where the summations extend over m and n. Let n be fixed and consider
those values of m which give an average different from zero. We see that
pin = i and w = k - U are two such values. The oniv other 1i(ssil ihities
are in = -in and = - k + it, but these lead to terms containing (except
when pt or k equal zero) three different angles, ,, ., and , which
average to zero. Using the fart that the average of cosine squared is ome-
half and that for a given n there are two such terms, we get

2 4to
""•f)A = C?-- 'n

+4 - (4.4-5)
"= ,(tA E w(f- f,,W(foJAf

"n--a*
where in the last step we have used

fA-_. = (k - n)Af = .-

and have implied, from c,-, = c,, that

f,=.) Uw(-n1f) = A)
is equal to w(f.j.

Thus, from (4.5-4), we get for the power spectrum of I

IV(f) = a2 w(x)w(/- x) dx (4.5-5)
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with the understanding that f is not zero and

W(--x) = w(x). (4.5-6)

The result which is obtained by using (2.8-6), involving the cosines and
only positive values of M, is

Il'(f) = a f w(x)uw(f - x) dx + 2a" w(x)w(f + x) dx (4.5-7)

This contains only positive values of frequency. (4.5-5) and (4.5-7) are
equiivalent a nd may readily be transformed into each other.

The first integral in (4.5-7) arises from second order modulation products
of the sum type and the second integral from products of the difference
type. This may be seen by writing the current as

I = aV2 = a CC, c CO (w,.t -Cs) COS (tCost -(. )i--i i--1

Sca, c.Icos t(,• - o i) - w, + PnJ (4.5-8)2 rn-i vetL,

+ cosR( +w(), + rP + g•)1j
The power in the rangef& ,fJ. + A/ is the power due to modulation i)roducts

of the difference type,' 6 ut& - ct., plus the power due to the modulation
products of the sum type, w4. I + wt,. In the first type f runs from I to x
and in the second type f runs from I to k - 1.

Consider the difference type first, and for the moment take both k and f
to be fixed. The two sets n - k + f, n = (and m =,A = k + tare the
only values of in and n in (4.5-8) leading to 0k.4t - wt. The two corre-
spronding terms in (4.5 8) are equal because cos (-x) is equal to cos .r. The
average power contributed by these two terms is

(c7-t C X (Average of (2 cos [(w•( - w&e) - ¢jp&t + v'd) 214 (4.5-9)

1:(aCk+e Ce)'

The power contributed tofk ,f + Af by the difference modulation products
is obtained by summing t from 1 to ac:

2 co t0

-X 4k+C!et 2al' w(f&+e)w(f)(Af) 2

-i"
-2 2oa&f j+(f, + f)w(/) dj

This leads to the second term in (4.5-7).
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Now consider the modulation products of the sum type. The terms of
this type in (4.5-8) which give rise to the frequency w& are those for which
vi+ ± is equal to k. Let nbe I then rn = k - 1. The phase of this term
is random with respect to all the other terms except the one given by n =
k - 1, in = 1 which has the same phase.- The average vower contributed
by these two terms in (4.5--8) is, as in (4.5--9),

"This disposes of two terms for which m + i is equal to k. Taking n to be 2
and going through the same process gives two more. Thus, assuming for
the moment that k is an odd number, the power contributed to the interval
ftfk f+ Af by the sum modulation products is

-f (a,, C._.)' 3 .1 (aC Ckj 2 -," a Af w(f)uJ(f,-f) df

and this leads to the second term in (4.5-7).
When the voltage V applied to the square law device is the sum of a noise

voltage VN and a sine wave:

V = P cos pI + VN, (4.1-13)

we have

-2= Pg cos pt + 2P+ PU cos pt + V4 (4.5-10)

From the two equations

12cos t cos 2PI

ave. V2- w.(f) df

we see that I, or alt?, has a dc component of

2 + Ct ,(/) df 45-1

which agrees with (4.1-14), and a sinusoidal component

g cos 2pt (4.5-12)
2

The continuous power spectrum W,(f) bf the remaining portion of I may
be computed from

2PVaNcos P•+t V+4.
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Using the representation (2.8-6) we see
N

2PVv cos pPt = PE C.[cos (W.t + Pt - V's) + cos (caIt - Pt - ip)1
I

For the moment, we take p = 2rrAf. The terms pertaining to frequency
f. = nAf are those for which

w, + p- 2f I n- p> 24fn

m-+-r =f Im-rl S-

M M - v MS V -= n

where only positive values of m are to be taken: If n> r, then m is n - r
or r + n. If n < r, then m is r - n or r + n. In either case the values
of m are In - r I and n + r. The terms of frequency f. in 2PVv cos pt
are therefore

Pci.-,i cos (2rft - jln-r,) + Pc.+, cos (2rf t -f j,1+r

and the mean square value of this expression, the average being taken over
the (p's, is

j(C"I +,) = P4Afjw(f,1 8. 7- 1 ) + w(f.+,)J

PA PAf[w(If. - f, 1) + WfY + 1)I

where f, denotes p/2r.
By combining this with the expression (4.5-5) which arises from VL

we see that the continuous portion W&f) of the power spectrum of I is

W,(f) ? P'w(f - f,) + W(f + fo)1

Sw(x)w(f-x)dx 
(4.5-13)

where w(-f) has the same value as w(f).
Equation (4.5-13) has been used to compute W,(f) as shown in Fig. 8.

The input noise is assumed to be uniform over a band of width ftcentered at
fp, cf. Filter c, Appendix C. By noting the area under the low frequency
portion of the spectrum we find

W.(f) df f awo(P' + #t.o)

Since the mean square value of the input Vv is 4hg fjtwo, it is seen that
this equation agrees with the expression (4.1-15) for the mean square value
of Ice, the low'frequency current, excluding the d.c. If audio frequency
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filters cut out part of the spectrum, W.(f) may be integrated over the re-
maining portion to give the mean square value of the corresponding output
current. This idea is mentioned in the footnote pertaining to equation
'(4.1-6).

If V consists of Vv plus two sinusoidal voltages of incommensurable fre-
quencies, say

V -=Pcos pt + Q cos qi + VN,

CONTINUOUS PORTION OF OUTPUT SPECTRUM OF SQUARE LAW DEVICE

INPUT = P COS 2Tlfpt + NOISE

OUTPUT1 D.C. S('/aipo)

LET ,S *t-

2C C
INPUT SPECTRUM

j *Urfu Pu01g CA

- ~ I arPeo -

I -j I
FREQ2UENCY

Fig. 8

the continuous portion W.(f) of the power spectrum of I may be shown to be

(4.5-13) plus the additional terms

a'Q[w(f - ~f9) + w(f + JO] (4.5-14)

wheref,j denotes q/2r;-

When the voltage applied to the square law device (4.1-1) is"

VQ1) = Q(1 + kcos pl)cos qt+ Vv

= Q cos qt + Q-coB (p + q)5 + 2- cos (p - q)t + V4.

the resulting current contains the dc component

aQ(1 + )+ajw(f) df (4.5-16)

"IA complete discussion of this problem is given by L. A. MacCoil in a manuscript
being prepared for publication.
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The sinusoidal terms of I are obtained by squaring

Q(1 + k cos pl) cos qt

and multiplying by a. The remaining portion of I has a continuous power
spectrum given by

W(f) = 2 [w(f- f) + w(f + h)
A2  I•

"+ W(f - f - A) + k t(f + A + A)

A 2 1(4.5-17)
"+ k V(f- A + fe) + W(f + A -f A)J

"+ a 2fG w(x)wv(f - x) dx

wheref, denotes p/21r and fq denotes q/21r.

4.6 Two CORRELATION FuNcTION METHoDs

As mentioned in Section 4.4 these methods for determining the output
power spectrum are based on finding the correlation function '(r) for the
output current. From this the power spectrum, W(f), of the output cur-
rent may be obtained from (2.1-5), rewritten asOD

W(f) = 4 ,*(r) cos 2rfr dr (4.6-1)

It will be recalled that W(f)Af may be regarded as the average power which
would be dissipated by those components of I in the bandf,f + Af if I were
to flow through a resistance of one ohm.

The input of the non-linear device is taken to be a voltage V(t). It may,
for example, consist of a noise voltage Vj(Q) plus sinusoidal components.
The output is taken to be a current 1(0. The non-linear device is specified
by a relation between V(t) and 1(t). In this work 1(t) at time t is assumed
to be completely determined by the valut of V(1) at time I.

Two methods of obtaining W(r) will be described.
(a) Integrating the two-dimensional probability density of V(t) and

V(t + r) over the values allowed by the non-linear device. This
method, which is especially direct when applied to noise alone through
rectifiers, was discovered independently by Van Vleck and North.

(b) Introducing and using the characteristic function, which for the sake
of brevity will be abbreviated to ch. f., of the two-dimensional prob-
ability distribution of V(1) and V(t + r).
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4.7 INF.AR DETECTION OF NOISE-Ttm VAN VLFECI-NoRTJI MF.TiO

The method due to Van Vleck and North will be illustrated by using it
to determine the output power spectrum of a linear detector when the input
consists of noise alone.

The linear detector is specified by

J0) =O, VW) < 0 (4.7-1)
ý~), VW) > 0,

which may be obtained from (4.2-1) by setting a equal to one, and the input
voltage is

VQ) = VA(I) (4.7-2)

where VAd) is a noise voltage whose correlation function is ip(r) and whose
power spectrum is w(f).

The correlation function *(r) is the average value of I(t)I(t + r). This
is the same as the average value of the function

F(V1 , V.) f=V IV2 , when both V,9 V2 > 0 (4.7-3)

10, all other Vs,

where we have set

V1 = V()

Vs v + tr)

The two-dimensional distribution of V, and V. is given by (3.2-4), and
from this it follows that the average value of any function F(Vi, Vg) is

+WdV f dV2. F(a IV) exp [-2-1 (, o (V + .o V2.- 2#1 V, V,)

(4.7-4)

where

For the linear rectifier case, where F(VI, Vs) is given by (4.7-3), the
integral is

,M Vv•,jVaj dV.VVexp -21-- (,V1 + IoN V2 - Vt, V,)
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where we have used (3.5-4) to evaluate the integral. The arc cosine is
taken to le between 0 and w. We therefore have for the correlation fuiic-
tion of I(I),

J (410 - O,'
2 + #7 ,s [#j) (4.7-5)

The power spectrum IV(f) may be obtained from this by use of (4.0- 1).
For this purpose it is convenient to write (4.7--5) in terms of a hypergeo-
metric function. By expanding and comparing terms it is seen that

4h 22(4.7-6)

4 2r- 44ru0 + terms involving 41'4, etc.

As will be discussed more fully in Section 4.8, a constant term A 2 in #(r)
indicates a direct current component of I(t) of A amperes. Thus I(I) has
a dc component equal to

[j#3112 / X rms value of V(I) (4.7-7)

This agrees with (4.2 -3) when the P of that equation is set equal to zero.
Integrals of the form

G((f) = j 44' cos 2ifr dT

which result when (4.7-6) is put in (4.6-1) and integrated termwise are
discussed in Appendix 4C. From the results given there it is seen that if
we neglect .4 and higher powers we obtain an approximation for the con-
tinuous portion WI(f) of W(f):

w.o) = G1(A) + q2-q)
Wno +Go(4.7-8)

f +4 #2 w(x)w(f - x) dx

where w(-f) is defined as w(0.
When Vv(t) is uniform over a relatively narrow band extending from

f• to fbso that w(f) is equal to wg in this band and is zero outside it, we may
use the results for Filter c of Appendix 4C. The fo and 0 given there are
related to f. and fb by

f =fofb =ffo +
232
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and the value of uro taken there is the same as here and is v/l. The value
of G,(f) given there leads to the approximation, for low frequencies:

(4.7-9)

when 0 < f < fb - f., and to Wo(f) 0 for fb - f0 < f<f. By setting
P equal to zero in the curve given in Fig. 8 for We(f) corresponding to the
square law detector, we see that the low frequency portion ,of the power
spectrum is triangular in shape and is zero at f = a. Tius, looking at
(4.7-9), we see that to a first approximation the shape of the output power
spectrum is the same for a linear detector as for a square law detector when
the input consists of a relatively narrow band of noise.

An approximate rms value of the low frequency output current may be
obtained by integrating (4.7-9)

= Wa(f) df

wo(fb - 1.) _ #o
8ir 8Vr

rms low freq. current _ - X rus applied voltage (4.7-10)

It is seen that this is half of the direct current. It must be kept in mind
that (4.7-10) is an approximation because we have neglected #4 and higher
powers. The true value may be obtained from (4.2-8). It is seen that the
coefficient (8r)-" 2 = 0.200 should be replaced by

1 rW (2 - )112 = 0.209

11'(f) for other types of band pass filters may be obtained by using the
corresponding G's given in appendix 4C. It turns out that (4.7-10) holds
for all three types of filters. This is a special case of Middleton's theorem,
mentioned several limes before, that the total power in any modulation
product (it will be shown later in Section 4.9 that the termedt in(4.7-6)
corresponds to the nh order modulation products) depends only on the
total input power of the applied noise, not on its spectral distriblution.

4.8 Tii CHARACTERISTIC FmNcio.x- 'Mu:rNOD

As mentioned in the preceding parts, especially in connection with equa-
tion (1.4-3), the ch. f. of a random variable x is the average value of exp

140



(izcx). This is a function of u. The ch. f. of two random variables x and
y is the average value of exp (iux + ivy) and is a function of u and v. The
ch. f. which we shall use here is the ch. f. of the two random variables V(t)
and 1(t + r) where VQ) is the voltage applied to the non-linear device, and
the randomness is introduced by t being selected at random, r remaining
fixed. We may write this characteristic function as

g(n, V, T) = Limit f (iuV() + ivV( + r)] dt (4.8-1)

If VQ) contains a noise voltage Vv(w), as.it always does in this section, and
if we use the representation (2.8-1) or (2.8-6) a large number of random
parameters (as and be's or ¢o's) will appear in (4.8-1). In accordance
with our use of such representations we may average over these parameters
without changing the value of (4.8-1) and may thereby simplify the integra-
tion.

For example suppose
V(Q) = V.N) + VA() (4.8-2)

where V(t) is some regular voltage which may, e.g., consist of one or more
sine waves. Substituting this in (4.8-1) and using the result (3.2-7) that
the ch. f. of V(t) and Vx. + r) is

g,.(H, V, r) = ave. exp [iuVN-(t) + ivVw(1 + r)].

exp[-0 (U2 + ,2) - UV] (4.8-3)

S,(7r) being the correlation function of VIfl, we obtain for the ch. f.
of V(t) and V(t + 7),

g(u, V, -r) expI-t (i' + it2) - ,nuvj

X Limit r exp [itVq(t) + ivV*(t + r)] di (4.8-4)

- g.V(u, i, r)g1(u, V, r)

In the last line we have used gs(u, v, r) to denote the limit in the line above:
g,(, . ) =Liit1 for

gOn, v, -r) = Limit exp [iuV(t) + ivV8 (Q + r)] dt (4.8-5)

The principal reason we use the ch. f. is because quite a few non-linear
devices may be described by the integral

SfL F(iu)' V,, du (4A-1)
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where the function F(iu) and the path of integration C are chosen to fit the
device. Examples of such devices are given in Appendix A*A. The corre-
lation function *'7r) of 1(t) is given by

T(7) = Limit f 1 f 1()I( + r) di
T-60 7 Jr-** T I~t .~ + p

= Limit f di f F(iu)e'ivY() du J F(iv)u"v"+r) dA
T-00 4e o2

L F(iu) du F(iv) dv (4.8-6)

Limit " exp [iuV(t) + ivV(t -J- r)] di

f F(iu) du L F(iv)g(u, v, -r) dv

This is the fundamental formula of the clh. f. method.
When VW) is the sum of a noise voltage and a regular voltage, as in

(4.8-2), (4.8-6) becomes

W(7) = Iw, F(iu)C(01 )u L F(ivP)C-"'o" 2 (4;ý2 e fe(4.8-7)

e"•'" ga(u, v, r) dv

where g8(u, v, r) is the ch. f. of V8(t) and V.(Q + r) given by (4.8-5). This
is a definite expression for ',(T). All that follows is devoted to the evalua-
tion of this integral and to the evaluation of

W(f) = 4 'I(v) cos 2wfr di (4.6-1)

for the power spectrum of 1.
Quite often 1(t) will contain dc and periodic components. It seems con-

venient to deal with these separately since they correspond to terms in
I'(r) which cause the integral (4.6-1) for W(f) to diverge. In fact, from
Section 2.2 it follows that a correlatidn function of the form

C2As + -j cos 2rfol- (2.2-3)

corresponds to a current

A + C cos (2irfot -- ) (2.2-2)
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where the phase angle j, cannot be determined from (2.2-3) since it does not
affect the average power.

Consider the correlation function for V(1) = V.(t) + V() given by
(4.8-2). It is

1ii 1[r TfpT

Limit-I [ V.(O)V,(t + r) di + V.(t)VN(t + r) dt
r T (4.8-8)

+ jV (T) VN(t + r) dt + f VX(t)VM(t + r) dt]

Since V.0) and VA(O are unrelated the contributions of the second and

third integrals vanish leaving us with the result

Correlation function of VQ() = Correlation function of V.()

+ Correlation function of V(t). -

Now as r -+ co the correlation function of 1() becomes zero while that of
V.(1) becomes of the type (2.2--3) given above. Hence the correlation func-
tion of the regular voltage V.(1) may be obtained from V0) by letting r --+ o
and picking out the non-vanishing terms. Although we have been speaking
of V(t), the same results hold for 1(1) and this process may be used to pick
out those parts of *(r) which correspond to the dc and periodic components
of I(t). Thus, if we look at (4.8-7) we see that as r -- ' oo, i, --. 0, while the
g. (u, v, r) corresponding to I',(I) given by (4.8-5) remains unchanged in
general magnitude. This last statement may be hard to see, but examina-
tion of the cases discussed later show that it is true, at least for these cases.
Thus the portion of l'(r) corresponding-to the do and periodic components
of I(1) is, setting 47, = 0 in (4.8-7),

4I(r F(iu)e(0#!2)U du F(iv)e-jz ,Ao/2)'g,(u, r, -r) dv (4.8-10)

where the subscript ca indicates that *'P(r) is that part of *('k) which does
not vanish as r --+ cc.

We may write (4.8-9), when applied to I(t), as

*I'(r) = 4'1.(r) + tý(r) (4.8-11)

where l'I,(r) is the correlation function of the "continuous" portion of the
power spectrum of I(t).

Incidentally, the separation of *T'(r) into the two parts shown in (4.8-11)
may be avoided if one is willing to use the 5(f) functions in order to interpret
the integral in (4.6-1) as explained in Section 2.2. This method gives the
proper dc and sinusoidal components even though (4.6-1) does not con-
verge (because of the presence of the terms leading to 4 '(r)).
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4.9 NOISE PLUS SINE WAVE APPLIED TO NON-LINEAR DEVICE

In order to illustrate the characteristic function method described in
Section 4.8 we shall consider the case of a non-linear device specified by

I 1 f F(itc)e'vu du (4A-1)

when V consists of a noise voltage plus a sine wave:

V(1) = P cos p1 + VN(Q) (4.1-13)
As usual, VNQ'() has the power spectrum w(j) a- d the correlatio, function

41(r). O'(r) is often written as 4', for the sake of shortness. Comparing
(4.1--13) with (4.8-2) gives

W,(1) = P Cos p1 (4.9-1)

Our first task is to compute the ch. f. g.(u, r, T) for the pair of random
variables 1'7°) and VX(t + r). We do this by using the integral (4.8-5):

v, z-r) = Limit f exp [iuP cos pt + ivP cos pQ + r) J dt
(4.9-2)

= Jo(PV2%/ + V2 + 2,, Cos pT)

where JA is a Bessel function. The integration is performed by writing

u cos pt + v cosp + r) = (u + V cos pT) cos Pt - V sin p7 sin Pt

= V7T7W + t2uv cos pr ccs (pt + phase angle)

and using the integral

J0(z) = h 1  n e" Cox di

The correlation function for (4.1-13) has also been given in Section 3.10.
The correlation function +k(r) for 1(1) may now be obtained bh substi-

tuting the above expressions in (4.8--7)

1- I. f du F(iu)c- (00"12),' dv F(iv)e-C (l2)Pu4 3
47r- e, f e(4.9-3)

e-r"•'Jo(P/Vu2 + V + 2Žuv cos pr).

,'P,(r), the correlation function for the d.c. and periodic cmponents of r,
may, according to (4.8-10), be obtained from this by setting #requal to zero.

When vwe have a particular non-linear device in mind the appropwiate
F(iu) may often be obtained from Appendix 4A. For example, F(iu) for a
linear rectifier is -i- 2 . Inserting this value in (4.9-3) givcs a definite
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double integral for ' r). If there were some easy way to evaluate this in-
tegral then everything would he fine. Unfortuntcly, no simple method of
evaluation has yet been found. However, one method is alVaiill)le which is
closely related to the direct method used bh Bennett. It is based oin the
expansion

g.(u,.v, T) = Jo(P\/u2 + tP + 2uv cos pr)

= E,,(-)"J4(PN)n(P) cos nPn (4.9-4)

*1 1= , e,=2 for ni> 1

This expansion enables us to write the troublesome terms in (4.9-3) as

- Jo(PN/u2 + v + 2uv cos pr)

£ E n+kE:OS N (#ýuV)J (4.9-5)
11"o &~o k JP)J(1v

The virtue of this double sum is that it simplifies the integration. Thus,
putting it in (4.9-3) and setting

2 - 7r¶- JF(iu)utJ,1 (Pu)Ce '2)"' du (4.9-6)

gives

,1,(r) = £ 1 pkh; 3 COB fli? (4.9-7)

The correlation function '..(T) for the dc and periodic components of r
are obtained by letting r- -- oo where Or -- 0. Only the terms for which
A = 0 remain:

k.,(r) = *4. i4 o cos nj•r (4.9-8)
"nmO

Comparing this with the known fact that the correlation function of

A + C cos (2rfot - V) (2.2-2)
is

2CA2+ cos 2Tf/07: (2.2-3)

and remembering that eu is one while e. is two for n > 1 shows that

Amplitude of dc component of I = kmo

Amplitude of i- component of I = 2hso (4.9-9)
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Incidentally, these expressions for the amplitudes follow almost at once from
the direct method of solution. This will be shown in connoction with equa-

tion (4.9-17).
Since the correlation function tr,(r) for the continuous portion W&J) of

the power spectrum for I is given by

IX,(--) 4(,,) -- ¢ ), (4.8-11)

we also have

g I t. COS MPr (4.9-10)

When this is substituted in cc
W.(f) = 4f *c(r) cos 2rfT dr (4.9-11)

we obtain d cc 2 .h i [ G .(f + GA.+ )
wry) = 2 E ,,,i [G (-- ( + Q+ (4.9-12)

n--0 k-- 12 2-

where

Ga(f) j r t cos 2wir dr (4.9-13)

is the function studied in Appendix 4C. G(f) is an even function off. The

double series (4.9-12) for W. looks rather formidable. However, when we

are interested in a particular portion of the frequency spectrum often only

a few terms of the series are needed.
It has been mentioned above that the direct method of obtaining the out-

put power spectrum is closely related to the equations just derived. We
now study this relation.

We start with the following result from modulation theoryWo: Let the
voltage

V =Pocosxo+Picosxi+"" ± Pwcosxn 49-4
V P0COSXO +P, OS X + PJVCOSX.V (4.9-14)

X& = P1t, k = O, 1,... N,

where the P&'s are incommensurable, be applied to the device (4A-1). The

output current is

"E =... X..NN=o-o ,,M-o (4.9-15)

* • . OMUV COS moXo COS MlXR ... os mN X.V

6o Bennett and Rice, "Note on Methods of Computing Modulation Products," Phil.

Mag. S.7, V. 18, pp. 422-424, Sept. 1934, and Bennett's paper cited in Section 4.0.
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where ea = I and Em = 2 for ti >_ 1. When the product of the cosines is
expressed as a sum of cosines of the angles mn, xo -4- mix " ±- -lmsxN, it is
seen that the coefficient of the typical term is Am...G except when all
the m's are zero in which case. it is JAo... . Thus

IA&)...o = dc component of I

I A,.0. .. I = amplitude of component of frequency (4.9-16)
1

2v

For all values of the re's,
An+°:.,,, f F(iu) J :+,(l,,u) d•u

A C Ho (4.9-17)

M = m0 + mn1 + - + m,,

Following Bennett's procedure, we identify V as given by (4.9-14), with

V = P Cos pI + V1' (4.1-13)

by setting Po = P, Po = p, and representing the noise voltage Vy by the sum
of the remaining terms. Since this makes P,, A•N all very small, Laplace's
process indicates that in (4.9-.17) we may put

II JO(Pru) exp - - (PL+ +-. + P(18)
- 4(4.8)

We have used the fact that 44 is the mean square value of VV. it follows
from these equations that

dc component of I = d-u

Component of frequency = [ F(iu)J (Pu)e-O°"du

These results are identical with those of (4.9-9).
The equations just derived show that h.o is to be associated with the n'h

harmonic of p. In Miuch the same way it may be shown that k.k is to be
associated with the modulation products arising from the nf' harmonic of
p and k of the elementary sinusoidal components representing VN. We
consider only combinations of the form PI ± P2 + pP , taking k = 3 for ex-
ample, and neglect terms of the form 3pj and 2p1 ± P2. The former type
is much more numerous, there being about N3 of them while there are only
about N and N2, respectively, of the latter type.
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We again take k = 3 and consider mi, me,, m3 to be one, and nk, -. mN
to be zero, corresponding to the modulation product tp * Pi + Pa +t Pa.
By making the same sort of approximations as Bennett does we find

A1,.m .. o "D r..... ..I P .PPf F(iu)J,(Pu)ue,"""'2)ý du7r 8 f e

=PIL P2 I's he,
4

When any other modulation product of tihe form np _+ P't .=- P'2 +- PS is
considered we get a similar expression in which PjPjP3 is rcplaced by
P,,P,,P,,. This may be done for any value of k. The result indicates
that k.L., and consequently also the (n, k) th terms in the double series
(4.9-10) and (4.9-12) for *l,(r) and W,0f), are to be associated with the
modulation products of order (n, k), the n referring to the signal anti the k
to the noise components.

We now may state a theorem due to Middleton regarding the total power
in the modulation products of a given order. For a given non-linear device
(i.e. F(iu) is given), the total power which would be dissipated by all of the
modulation products which are of order (n, k) if r were to flow through a
resistance of one ohm is

T"n(0) 1 n•0]ll.. k - -,Vx k 1 (4.9-19)

The important feature of this expression is that it depends only on the r.m.s.
value of 17N and on F(iu). It depends not at all upon the spectral dis-
tribution of the noise power in the input.

'r'he proof of (4.9-19) is based on the relationO"Pi = f (f)

between the total power dissipated by all the (n, k) order products and the
conrediwe gorrelation function obtained from (4.9-7).

This theorem has been used by Middleton to show that when the input
is confined to a relatively narrow krequency band, so that the output spec-
trum consists of bands, the power in each band depends only on Vn and not

on the spectrum of Vnt.

4.10 M.-SCELLANEOurS RESUrLTS 0O3TAINE•D BY CORRELATION FtrNcloN
MTRaoD

In this section a number of results which may be obtained from the theory
given th the sections following 4.6 are given.
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When the input to the square law device

I = al'2  (4.1-1)

consists of noise only, so that V = rN, the correlation function for 1 i:

*(r) =a[#, + 2 4i, (4.10-1)

where 41, is the correlation function of VN,. This may be compared with
equation (3.9-7). XVIen V is general,

*(r) = ave. 1(1)1(1 + -s-)

= ave. aK V2(t) V2 (t + r)

= )a Coefficient of (i) in power series expansion (4.10-2)
2! 2!

of ch. f. of VQ), V(I + r)

where we have used a known Jproperty of the characteristic function. An
expression for tihe ch. I., denoted by g(u, r, r), is given by (4.8-4). For
example, when V consists of a sine wave plus noise, (4.1 -13), the ch. f. is

obtainable from (4.9 3). Ihence,

f(r) Coeff. of i in expansion of4
S2 jo(Pv',,2 + V + 2uv cos pr)

)( CXp) 90( + t?) -rUV] (4.10-3)

[(P cos 2pr + 2tfltq cos Pr + 244;

The first two terms give the dc and second harmonic. The last two terms

may be used to compute WJ(J) as given by (4.5--13).
Expressions (4.10--1) and (4.14-3) are special cases oif results obtained by

Middleton who has studied the general theory of the quadratic rectifier by
using the Van Vleck-North method, (Iscribed in Section 4.7.

As an example to which the theory of Section 4.) may he applied we con-
sider the sine wave plus noise, (4.1--131, ti be applied to the v4-law rectifier

= 0, V < 0

1 V. V(..10-4)

From the table in Appendlix 4A1 it is 'c-en that

F(iu) =lI'(P + l'(iu)-"
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and that the path of integration C runs along the real axis from - cc to Co

with a downward indentatiun at the origin. The integral (4.9-6) for k,t

becomes

h~ --- •-r(P +-1 u fak-W-I J,,(Pu)e- (Oo/2)0 du

= -~ -- rf +1 1 )k1~2 )Ho2u i2v )
S(ýo)~ 2 x"n/2 12(v + 1) (k+ P + 1; (4.10-5)

2r(2-k n2 + v) n,

where the integration has been performed by expanding J.(Pu) in powers
of u and using

.e"' Culi'- du = ie -Ma sin -rF(X)

--=(1 -a e-")l'()) (4.10-6)2

it being understood that arg u = 0 on the positive portion of C.
From (4.9-9), the do component of I is

2P(1 + 2) 12

which reduces to the expression (4.2-3) when v = 1 for the linear rectifier
(aside from the factor a).

When the input (sine wave plus noise) is confined to a relatively narrow
band, and when we are interested in the low frequency output, consideration
of the modulation products suggests that we consider the difference products
from the products of order (0, 0), (0, 2), (0, 4), ..- (1, 1), (1, 3), .- - (2, 0),
(2, 2), .-. etc. where the typical product is of order (n, k). The orders
(0, 0) and (2, 0) give the dc and second harmonic and hence are not con-
sidered in the computation of li(f). Of the remaining terms, either (0, 2)
or (1, 1) gives the greatest contribution to the series (4.9-12) and (4.9-10)
for Wý(f) and ',k(r). The remaining terms contribute less and less as n and
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k increase. The low frequency portion of the continuous portion of the
output power spectrum is then, from (4.9-12),

W4f) j ,Gs(f) +L h*G W(f) +.

+ hjAMGCf - A0) + GSJf + Jo)] + A h)1G.(f - Jo) (4.10-8)

+G(f +f)1 4 + h[GG(f- 2fA) + GC(f + 2fo)I +

FromTable 2 of Appendix 4C we may pick out the low frequency portions of
the G's. It must be remembered that G,(x) is an even function of x and
that 0 < f << fo.

As an example we take the input noise V, to have the same w(f) and
4P(4) as Filter a, the normal law filter, of Appendix 4C, so that

and assume that the sine wave signal is at the middle of the band, giving
p - 2rfo. Thus, from (4.10-8), for low frequencies and the normal law
distribution of the input noise power,

WO~~~n h2 2, .- /2/r* 4:2/W

4,= 4 :1:"'° ' + INo4toC+-

+ hl;ppo." 21  + I,, $Coh+k='" (4.10-9)

+ *:i J.-

Although we have been speaking of the v-law rectifier, equation (4.10-9)
gives the low frequency portion of W.(f), corresponding to a normal law
noise power, for any non-linear device provided the proper Ah's are inserted.

When we set v equal to one in the expression (4.10-5) for h 1, we may ob-
tain the results given by Bennett. Middleton has studied the output of a
biased linear rectifier, when the input consists of a sine wave plus noise, and
also the special case of the unbiased linear rectifier. He has computed the
output for a wide range of the ratios P2140o, B¶/to where B is the bias. In
order to cover the entire range he had to derive two series for the corre-
sponding k,*'s, each series being suitable for its particular portion of the
range.
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A special case of (4.10 -9) occurs when noise alone is applied to a linear
rectifier. The low frequency portion of the output power spectrum is

W df),(--- - - -C ~ e

4,o1 C Ee-"a' 1 -12/80 (4.10-10)
2 T -" + 64v+

+256V3J
where we have used (4.7--6) and Table 2 of Appendix 4C.

The correlation function of

V. = Pcos f + Q cos qt,

where p and q are incommensurable, is

Jo(PV•2 + -V + 2uv cos pT) X Jo(Qx/u2 + %P + 2uv cos qr)

From equations (4.9-16) and (4.9-17) it is seen immediately that

1 fo F(iu)Jo(Pu)Jo(Qu)e-0''1 2)*' dU (4.10-11)
2w Jo

is the d.c. component of I when the applied voltage is

P cos p -+ Q cos q1 + Vv. (4.1-4)

J. R. Ragazzini has obtained an approximate expression for the output
power spectrum when the voltage

V= vS,+ VV

V. = Q(1 + r cos pt)cos q(

is impressed on a linear rectifier." In terms of our notation his expression
for the continuous portion of the power spectrum is (for low frequencies)

1 Y [W,,(f) given by equation . (4.M-13)
W •a +(Q' + 24,o) L(4.5-17) for square law deviceJ

The a? is put in the denominator to cancel the aW in the expression (4.5-17).
We take the linear rectifier to be

S(4.10-14)
0V, < V

and replace the index of modulation, k, in (4.5-17) by r.
"Equation (12), "The Effect of Fluctuation Voltages on the Linear Detector," Proc.

I.R.E., V. 30, pp. 277-288 (June 1942).
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Ragazzini's formula is quite accurate when the index of modulation r is
small, especially when y = Q'/(22o) is large. To show this we put r - 0
in (4.10-13) and obtain
WA(f) = I 2 o Qw(fq -- f) + Q2w(-y, +f)

r'(Q +2  Q ± f +(4.10-15)

+ •gow(xw - x) dx]

where fu = q/(2r). This is to he compared with the low frequency por-
tion of W,(f) obtained by specializing (4.10-8) to obtain the output power
spectrum of a linear rectifier when the input consists of a sine wave plus
noise. The leading terms in (4.10-8) give

WtJ) = h,[wV(f. - ) + v(f 0 + f)1
+h: xd (4.10-16)

The values of the h's appropriate to a linear rectifier are obtained by set-
ting s, = 1 in (4.10-5) and noticing that Q now plays the role of P.

A11 = 1F1(j; 2; -y)

A., = (2*,F)-"' F,(j; 1; --y) (4.10-17)

y = Q'/(24o)
Incidentally, the first approximation to the output of a linear rectifier

given by (4.10-16) is interesting in its own right. Fig. 9 shows the low fre-
quency portion of W°(f) as computed from (4.10-16) when the input noise
is uniformly distributed over a narrow frequency band of width P, f, being
the mid-band frequency. ha and h01 may be obtained from the curves
shown in Fig. 10. In these figures P and x replace Q and y of (4.10-17) in
order to keep the notation the same as in Fig. 8 for the square law device.
These curves may also be obtained from equations (33) to (43) of Bennett's
paper.

The following values are useful for our comparison.

When x = 0 When x is large

ha =0 hn - 1/7r (4.10-18)

o2 = (24,o)-f'" ho2 - 1/(rQ).

The values for large x are obtained from the asymptotic expansion (4B - 3)
given in Appendix 4B.
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LOW FREQUENCY OUTPUT OF LINEAR RECTIFIER
APPROXIMATION -SECOND ORDER PRODUCTS ONLY

INPUTsVv Peas *lrfptl + igl

- -. OUTPUT D.C.= 1c0 -to

WG' LET C--~ F: V phs

2C G

INPUT SPECTRUM

fibt
0 A _ _

FREQUENCY

Fil. 9

0s.3

8QE t .5 30 1.5 4.0r
Ag 31tWAVE Powcq gE
NVS, ,POWC ap%

Fig. for linear detector output shown on Fig. 9

* Phol 4 ,(1-) hit a.. .F..j; 2; -x)

We make the first comparison between (4.10-I5) and (4.10-46) by lettingQ-. It is seen that both reduce to

W 1i[Wfq 1) + w(f, +1)] (4.10-19)
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which shows that the agreement is perfect in this case. Next we let Q = 0.
The two expressions then give

W0() ý J w(x)w(f - x) dxA2arko"

where A = r for Ragazzini's formula and A = 4 for (4.1116). Thus the
agreement is still quite good. The limiting value for (4.10-16) may also
be obtained from (4.7-8).

Even if the index of modulation r is not negligibly small it may be shown
that when Q -- wc W,(f) still approaches the value given by (4.10-19).
Ragazzini's formula gives a somewhat larger answer because it includes the
additional terms, shown in (4.5-17), which contain k2/4, but this difference
does not appear to be serious. If the Q2 + 2 0o in the denominator of (4.10-
13) be replaced by Q' + •W• 2/ + 24#o the agreement is improved.

APPENDIX 4A

TABLE OF NON-LINEAR DEvIcES SPEciFIED BY INTEGRALS

Quite a number of non-linear devices may be specified by integrals of the
form

I t L F(iu)etv, du (4A-1)

where the function F(iu) and the path of integration C are chosen to fit the
device.* The table gives examples of such devices. Some important cases
cannot be simply represented in this form. An example is the limiter

Ic -- aD, V < -D

I CV, --D< V <D

I = aD, D < V (4A-2)

which may be represented as

I = 2a sin Vu sin Du du

2a VU. du (4A-3)
= --aD + 2•i sin Du- 1

where C runs from - oc to + ao and is indented downward at the origin.
This is not of the form assumed in the theory of Part IV. However it
appears that it would not be difficult to extend the theory in the particular
case of the limiter.

Reference 50 cited ir Section 4.9.
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Non-Linear Devices Specified by Intkgraos

i!; •f F(iu).iv" dm

I F(iu) C Type of Device

I - aV", n integer a ni Positive Loop nth power device
(ju),n+l around u = 0

I - a(V - B)", n a ,ti Positive Loop with power device
integer Wi(43+i around a* - 0 with bias

I- 0, V < 0 - -• Real s axis from Linear rectifierI - aV, 0 < V c -- -o to + a* with cut-off atdownward in- V - 0

dentation atS~U-0

1o, V < B ar(v + i) 6-"" " vth power recti-
I a(V - B)-, (iu)-+C fier with binsV>B

r any positive number

1-0 V < 0 " Linear rectifier
I'- r, 0<V<D < 2(1 -- r-u') plus limiter
I - aD, D< V (is)'

I,0 0, V< "
l. #(V), V >0 F(p) faJ -r-(,) di

"APPENDIX 4B

THE FuNcrIoN jF1(a; c; z)

In problems concerning a sine wave plus noise the hypergeometric func-
tion

1FP(a; C; z) =1 + f"! +- +a( + ') ?+ - (4B-1)
elIt c(c +1) 21

arises. Here we state some of its properties which are of use in the theory
of Part IV. Curves of LF,(a; c; z) are given for a - - 4, - 3.5 -.. , 3.5,
4.0 and c = - 1.5, - .5, + .5, 1, 1.5, 2, 3, 4 in the 1938 edition, page 275,
of "Tables of Functions", by Jahnke and Emde. A list of properties of the
function and other references are also given. In addition to these refer-
ences we mention E. T. Copson, "Functions of a Complex Variable" (Ox-
ford, 1935), page 260.

If c is not a negative integer or zero

1FI(a; c; z) = e0jFI(c - a; c; - z). (4B-2)
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When R (s) > 0 we have the asymptotic expansions

r(c)' F + (1 a)(c - a)
IFI(a; C;:) r a) - I ... .. !

I _- -a) (2 a)(c- - - ] + a +
a -) rc [(4B-3)

rc + (I +- a - c)
AF(a; C; -Z) rc-az 1l

1'(c - aIs L it

+ (a 4t 1)(1 + a - c)(2 + a -
215,2 +

Many of the hypergeometric functions encountered may be expressed in
terms of Bessel functions of the first kind for imaginary argument. The
connection may be made by means of the relation"l

( ,Z)zF + -] 2v +- 1; z ) 22yI'(r +- 1)C-reIIvQ (4B-4)

together with the recurrence relations

FF... F 1e- 1. F_ F

1. a (a-- c) c - 2a-- z
2. ac (c- a)z - c(a + z)
3. a -c C-- a-
4. -C -Z c
5. a-- c- 6 1--a--z
6. (c - a)s C(c- i)(l - c - Z)

For example, the first recurrence relation is obtained from line 1 as follows

aF(a + I; c; z) + (a - c)F(a - 1; c; z)

"+ (c - 2a - z)F(a; c; z)= 0 (4B-5)

These six relations between the contiguous 1A 1 functions are analogous to
the 15 relations, given by Gauss, between the contiguous 2F1 hypergeometric
functions and may be derived from these by using

,FI(a; c; z) = Limit ,F:(a, b; c; z (4B-6)
b'-*o \o)

A recurrence relation involving two AP,'s of the type (4B-4) may be ob-
tained by replacing a by a + I in the relation given by row four of the table

U G. N. Watson, "Theory of Bessel Functions" (Cambridge, 1922), p. 191.
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and then eliminating 1F&(a + 1; c; z) from this relation and the one obtained
from row 3 of the table. There results

FL(a; c; z) - (a; c - 1; z) + -- !!L- F(a + 1; c + 1; z) (4B-7)
c(1 - c)

Setting r equal to zero and one in (4B-4) and a equal to j, c equal to 2 in
(40-7) gives

-n3; P)= 4C'ee"' It 0 (4B1-8)

1F1  2; ) -r[,to (2j - 1i 0!)]
Starting with these relations the relations in the table enable us to find

an expression for iF1(n + 4-; m; z) where n and m are integers. A number
of these are given in Bennett's paper. In particular, using (48-2),

iF - 1; -I) - 2(l + z)TOG + tQ) (4B-9)

APPENDIX 4C

Tw.: PowER SPECTRUM CORRESPONDING TO g

Quite often we encounter the integral

GNU j I4<rW cos 2rfr dr (4C-1)

where J&(r) is the correlation function corresponding to the power spectrum
w(f). From the fundamental relation between u(f) and 44(r) given by
(2.1-5),

G1(f) = w(f) (4C-2)
4

The expression for the spectrum of the product of two functions enables us
to write GU(f) in terms of w(t). We shall use the following form of this
expression: Let F,(f) be the spectrum of the function wr(r) so that

,(r) f - F4(0 "' df, r = 1, 2

FI) = ,r(r)C-, tdt
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Then

i- v,(r)joa(r)e-"ufr dr , F(x)F(f - x) dx (4C-3)

i.e., the spectruim of the product IPI(rt)o,(r) is the integral on the right.
If jio(r) and ,g(r) are real even functions of r, (4C-3) may be written as

f P1(r)p(r) cos 2rfi dr = I F(x)F2(f - x) dx (4C-4)

In order to obtain G(Jf) we set ýp1(r) and V2(7r) equal to O(r). We may
then use (4C-4) since 4'(.r) is an even real function of r. When ,(r) is an
even real function of r we see, from the Fourier integral for F,(f), that F,(f)
must be an even real function of f. We therefore set

21,(f) = waf), r = 1, 2

and define w(f) for negative f by

W(- ) = w(O) (4C-5)

Equation (4C-4) then gives

G9(J) = w(x)w(f - x) dx

= - w(x)w(f - x) dx (4C-6)

+4 w(x)w(f + x) dx

where in the second equation only positive values of the argument of w(f)
appear.

In order to get Gs(f) we set vi(r) equal to 4(r), 2Fdf) equal to w(f), and
'n(7) equal tB #02(r). Then i"e

F2(J) = 210 yg(r) cos 2rfr dr

= 2G2(f)

and from (4C-4) we obtain

Gs(i) = w(x)G,( - x) dx
(4C-7)

+16 w (.x) dx w(y)w(f - y') dy

159



Equation (4C-7) suggests that we may write the expression for Gg(f) as

G2(f) = w(x)G,(f - x) dx (4C-8)

This is seen to be true from (4C-2) and (4C-6). In fact it appears that

a,%(f) -"f tv(f - x)Ga-l(x) dx (4C-9)

might be used for a step by step computation of Gn(f).
We now consider G,(f) for the case of relatively narrow band pass filters.

As examples we take filters whose characteristics give the following w(f)'s
and ',(r)'s

TABLE I

Filter w(f) iorf > 0 4,()

a 0v e_-I(o)h/bS 'oa-Vrorr)l cos 21rfo

b 4o._._ a 1_ I oe"•0vairi COS 21Tfor
Ir at + (f - fodl

•o(f) ='wo - OWP for

-- A <f ..... i nTo cos 2TfG 7

2 2 vOr
w(f) a 0 elsewhere

We shall refer to these filters as Filter a, Filter b, and Filter c, respectively.
All have fe as the mid-frequency of the pass band. The constants have
been chosen so that they all pass the same average power when a wide band
voltage is applied:

To = f w(f) df = mean square value of I(t) or V(1)

and it is assumed that f 0 >> q, f 0 >> a, fo > t 0 so that the pass bands are
relatively narrow.

Expressions for G.(f) corresponding to several values of n are given in
Table 2. When n = 1, G(.f) is simply w(f)/4. Gs(f) is obtained by set-
ting a = 2 in the definition (4C-1) for G.(f), squaring the #(r)'s of Table 1,
and using

cos! 2rfor - j + I cos 4 rfor
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"The expression for G2(f) given in 'Table 2 corresponding to Filter c is

exact. The expressions for Filters a and b give good approximations around

f = 0 andf - 2fc where G2(f) is large. However, they are not exact because

terms involving f + 2fo have been omitted. It is seen that all three GU's

behave in the same manner. Each has a peak symmetrical about 2fo whose

width is twice that of the original w(f), is almot zero between 0 and 2f0 ,
and rises to a peak at 0 whose height is twice that at 2fo.

Gs(f) is obtained by cubing the #(r) given in Tab4Le I and using

cos3 2rfor = • cos 2rfor + - cos 6irfor.

From the way in which the cosine terms combine with cos 2rfr in (4C-1) we

see that G,(f), for our relatively narrow hand pass filters, has peaks at fo

and 3fb, the first peak being three times as high as the second. The ex-

pressions given for Ga(f) anti G4(f) are approximate in the same sense as are

those for G2(f). It will be observed that the coefficients within the brackets,

for Filters a and b, are the binomial coefficients for the value of it concerned.

Thus for n = 2, they are 2 and 1, for n = 3 they are 3 and 1, and for n - 4

they are 6, 4, and 1.
The higher GJJ)s for Filters a and b may be computed in the same way.

The integrals to be used are

-2n(rnr)2cos 2rf-dr= q~~g

e-inrat cos 2-rfr dr7 = 7 -

In many of our examples we are interested only in the values G.(f) for

f near zero, i.e., only in that peak which is at zero. It is seen that G.(f)
has such a peak only when n is even, this peak arising from the constant
term in the expansion

cos2kx I - cos 2kx + 2k cos 2(k - 1)x + (2k)(2k - 1) cos 2(k - 2)x

+ + ( k - 2)! + I cos 2x + )I
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