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In this review, we first set out the general linear model (GLM) for the non technical reader, as a tool able to do
both linear regression and ANOVA within the same flexible framework. We present a short history of its de-
velopment in the fMRI community, and describe some interesting examples of its early use. We offer a few
warnings, as the GLM relies on assumptions that may not hold in all situations. We conclude with a few
wishes for the future of fMRI analyses, with or without the GLM. The appendix develops some aspects of
use of contrasts for testing for the more technical reader.
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Introduction

The general linear model (GLM) has been at the heart of functional
Magnetic Resonance Imaging analyses for the past 20 years. While
methods have evolved rapidly, most of the papers published in the
field use this technique, and it is likely that this will continue, for bet-
ter or worse. The main reason for this is the conceptual simplicity of
the GLM, the fact that it implements standard statistics used in bio-
medical research, and that it can provide some answers to most of
the standard questions put to the data. While one may wish that
the research community would be prompt to adopt new statistical
frameworks – for instance the Bayesian framework – like many com-
munities, it has stayed close to the familiar analyses that the GLM
provides.

There seems to be something special about the GLM in fMRI. A
PubMed search for “general linearmodel” in article titlesfinds neuroim-
aging papers in the large majority. Here we will argue that the GLM has
a specialflavor in functional imaging because the typical interface to the
GLM in neuroimaging is close to the details of its implementation. This
lends a “low level” flavor to the use of the GLM in fMRI.

In this review,wewill first explainwhat the GLM is, in the formof an
introductory tutorial. We hope our readers will not be offended by the
basic level of our tutorial. Of course the GLM is very widely used; fMRI
analyses are rarely done with any other technique except for resting
state fMRI (although, resting state fMRI ismost often analyzedwith cor-
relation or partial correlation, which can be seen as a special case of the
GLM). The reasonwe havewritten our article in this way is that, despite
itswide use, it is not always completely understood.While startingwith
the very basic, we hope that even thosewith somebackground in statis-
ticswill learn someuseful facts (perhaps in the appendices).Wewill in-
clude some examples of cases that have been confusing, sometimes
shamelessly stolen from other references (and cite our sources.1 )
Most of these examples are not specific to fMRI, but the fMRI communi-
ty or at least a good part of it has adopted a specific way of presenting
the GLM in matrix form. This allows great flexibility and better under-
standing of the inner mechanism of the GLM, but it can be hard to see
the relationship of the neuroimaging GLM with the same underlying
machinery in other statistical tools. We will try to explain the different
presentations and how they correspond.

In the second section, we will briefly review the history of the in-
troduction of the GLM into the fMRI community. In the third section,
we offer a few examples to show how the GLM was used to answer
some new questions arising in fMRI. Finally, we conclude with a few
wishes for the future.

What is the general linear model?

To explain the general linear model, we start with an extremely
basic review of notation for linear regression.

Linear regression for those dumber than dummies

Let us say that 9 authors are submitting papers for a special edition
of NeuroImage. The edition is disastrously late and the editors of Neu-
roImage are interested to know why. The editors wonder whether
older authors are submitting their articles later than younger authors.

Let's give the nine authors numbers i=1…9.
For each author we have:

yi=Days after the deadline that author i submitted their article
xi=Age of author i
1 But only when those come from friends or important members of our community.
At a first pass the editors predict that there is a straight line rela-
tionship between the number of days late yi and age xi.

Because the editors are rigorous they specify this as a model, thus:

yi ¼ β0 þ β1xi þ �i: ð1Þ

β0 is the intercept (the number of days late for an author of age 0) and
β1 is the slope (the number of days late attributable to each year of
someone's age). �i is the remaining unexplained data in yi after sub-
tracting β0+β1xi.

At the moment we do not have a fully specified model, we have
only rephrased our data to state that they are to be a sum of terms.
For the model to be fully specified we need some assumption on �i.
Let us say that we believe the values in � arise as independent sam-
ples from a Gaussian distribution with zero mean and variance of
σ2. Independent means that knowing the value for �i gives you no
further information about �j for any i,j. The values are identically
distributed when each error �i arises from a Gaussian distribution
with the same variance σ2, regardless of i. Here our model of the
errors is that they are zero mean, independent and identically dis-
tributed, written as � eN 0;σ2I

� �
.

The model is characterized both by the formula explaining the
data (yi=β0+β1xi+�i) and by the assumptions on �.

We now have a statistical model expressed as a formula in terms
of xi. To get to the classic matrix formulation we apply a trick,
which is to make a new vector of ones, called x0, where x0i=1 for
all i. We rename our previous xi as x1i:

yi ¼ β0x0i þ β1x1i þ �i: ð2Þ

This is the same as model (1) above because β0x0i=β0×1=β0.
We can think of y,x0,x1, � as four column vectors of length 9, and
reformulate the model as matrix addition:

y1
y2
y3
y4
y5
y6
y7
y8
y9

2
6666666666664

3
7777777777775
¼ β0

1
1
1
1
1
1
1
1
1

2
6666666666664

3
7777777777775
þ β1

x1
x2
x3
x4
x5
x6
x7
x8
x9

2
6666666666664

3
7777777777775
þ

�1
�2
�3
�4
�5
�6
�7
�8
�9

2
6666666666664

3
7777777777775
:

Finally we reach the matrix formulation of the general linear
model by rearranging the matrix addition as matrix multiplication:

y1
y2
y3
y4
y5
y6
y7
y8
y9

2
6666666666664

3
7777777777775
¼

1 x1
1 x2
1 x3
1 x4
1 x5
1 x6
1 x7
1 x8
1 x9

2
6666666666664

3
7777777777775

β0
β1

� �
þ

�1
�2
�3
�4
�5
�6
�7
�8
�9

2
6666666666664

3
7777777777775
: ð3Þ

Call the yi vector Y, call the stack of vectors x0,x1 the design
matrix X, call the parameters β0,β1 the parameter vector β and
call � the error vector:

Y ¼ Xβ þ � ð4Þ



2 The term multiple regression is attributed to Pearson by the online www.statsoft.
com which states that “The general purpose of multiple regression (the term was first
used by et al., 1903) is to analyze the relationship between several independent or pre-
dictor variables and a dependent or criterion variable.”
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with � a zero mean Gaussian noise. Returning to our late articles,
we may also have the hypothesis that authors who are more
widely cited are more relaxed about sending in their articles late.
We get a measure of citation for each author and call this x2i for
author i. The statistical formula is:

yi ¼ β0x0i þ β1x1i þ β2x2i þ �i ð5Þ

In the matrix formulation of Eq. (4), the new term x2i can be
expressed as an extra column of x2i values in X, and an extra pa-
rameter β2 in the vector β. By extension the matrix formulation
can handle any multiple regression model with p parameters
(Scheffé, 1959, p. 4):

yi ¼ β0x0i þ β1x1i þ…þ βpxpi þ �i ð6Þ

Eq. (4) is the matrix formulation of Eq. (6).
In The intra subject example section of the appendix we describe

how this can be used in the analysis of intra subject data. Next we
show that we can include analysis of variance within the same
framework.

The general linear model and the analysis of variance

Let us imagine that we do not believe that age or citation rate are
important, but we do believe that authors from the USA, UK and
France have different tendencies to submit their articles late. The
first 3 authors (1…3) are from the USA, authors 3…6 are from the
UK and authors 7…9 are from France. Maybe it is more acceptable
to be late if you are from the UK (not France). Now we have a new
model which looks like this:

yi ¼ β1 þ �i; for authors i from the USA

yi ¼ β2 þ �i; for authors i from the UK

yi ¼ β3 þ �i; for authors i from France:

Let us assume again that the errors � i are independent. If we want
to find β1,β2,β3 that will result in the smallest sum of �i

2 values
(∑ i �i

2), then it may be obvious that β1,β2,β3 must be the means of
the yi lateness scores for US authors, the UK authors and the French
authors, respectively.

The statistician writes the new model like this:

yij ¼ βj þ �ij ð7Þ

where the j=1…3 index the group. In matrix form, this will look
like:

y1
y2
y3
y4
y5
y6
y7
y8
y9

2
6666666666664

3
7777777777775
¼

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

2
6666666666664

3
7777777777775

β1
β2
β3

2
4

3
5þ

�1
�2
�3
�4
�5
�6
�7
�8
�9

2
6666666666664

3
7777777777775
: ð8Þ

Let us call each column of X a regressor. We have three regressors;
let us call these r1, r2, r3. r1i=1 when the author number i is from the
USA and zero otherwise. The value of r1i therefore indicates member-
ship of author i in the category “USA”. r1, r2, r3 are often called indica-
tor variables (or regressors). They may also be called dummy variables
(or regressors). Encoding group membership with dummy variables
allows us to express analysis of variance and covariance in the frame-
work of the linear model (Eqs. (6) and (4)).

As before, if our errors � i are independent, and we solve our equa-
tion to give us the β vector that minimizes ∑ i � i

2, then the three en-
tries of the β vector will be the means of the US, UK and French author
late scores, as for Eq. (7).

If we decide we want to add back the effects of age to our model,
we have analysis of covariance (ANCOVA). This is as simple as com-
bining the columns of the design matrix of Eqs. (3) and (8):

y1
y2
y3
y4
y5
y6
y7
y8
y9

2
6666666666664

3
7777777777775
¼

1 1 0 0 x1
1 1 0 0 x2
1 1 0 0 x3
1 0 1 0 x4
1 0 1 0 x5
1 0 1 0 x6
1 0 0 1 x7
1 0 0 1 x8
1 0 0 1 x9

2
6666666666664

3
7777777777775

β0
β1
β2
β3
β4

2
66664

3
77775þ

�1
�2
�3
�4
�5
�6
�7
�8
�9

2
6666666666664

3
7777777777775
: ð9Þ

Note that we have added the constant column from the slope
and intercept model (the first column of all 1). In fact this makes
the design redundant, a point to which we return in the
Interpretation of the β and reparametrization of the model section
of the appendix.

What is the general linear model, really?

The term general linear model refers to a linear model of form
Y=Xβ+� (Eqs. (6) and (4)) in which:

• There may be analysis of variance coded with dummy variables.
• The errors � are drawn from a zero mean Gaussian distribution.

In retrospect, it is surprising that the GLM was not introduced ear-
lier, as it was already presented as such in several statistical text-
books. However, there seems to be some inertia in the teaching of
statistics, and statistical techniques such as t-test, ANOVA or
ANCOVA are still today sometimes taught separately.

The matrix formulation of multiple regression appears to date
from 1935 with the work of Alexander Aitken (Aitken, 1935; Seal,
1967). Scheffé's classic monograph “The Analysis of Variance” has a
section entitled “Deriving the formulas for an analysis of covariance
from those from a corresponding analysis of variance” (Scheffé,
1959). In effect, this is the general linear model, although he does
not name it as such. The least square technique itself was first pub-
lished by Legendre in 1805 (Legendre, 1805), and further developed
by Gauss, Laplace, and others (Lehmann, 2008). The importance of
the normality assumption was emphasized by the works of Pearson
and Fisher during the first half of the twentieth century in the devel-
opment of inference procedures.2

The general linear model is not always covered explicitly in intro-
ductory statistical texts. This may be because analysis of variance is
easier to explain by showing direct subtraction of group means. How-
ever, the use of dummy variables in multiple regression gets its own

http://www.statsoft.com
http://www.statsoft.com
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section in introductory statistical texts at least as early as 1972
(Wonnacott and Wonnacott, 1972). In the preface to the third edition
of “Statistics” byWilliam L. Hays (Hays, 1981), Hays comments on the
addition of a new chapter called “The general linear model and the
analysis of variance”:

The ready availability of computer programs for multiple regres-
sion and for multivariate analysis generally is giving such
methods a far more ubiquitous role in research then they former-
ly enjoyed. In order to understand and to take advantage of the
many options these methods represent, the student needs some
early groundwork in the general linear model, and especially in
the essential connections between multiple regression and the
analysis of variance.

This quote suggests another explanation for the visibility (or oth-
erwise) of the general linear model. The general linear model in its
matrix form is also the form in which a computer program is likely
to solve the estimation problem. It seems likely to us that the general
linear model in its matrix form will have a more direct explanatory
appeal to those writing code to estimate the model parameters, be-
cause the solution can be very concisely expressed with matrices.

The lm linear model in the S/R programming languages imple-
ments the general linear model with a formula interface (Chambers
et al., 1992). Other packages with explicit interfaces to the general
linear model include SPSS, SAS, and minitab.

Estimating and interrogating the model

A quick summary on how to estimate the parameters β is pre-
sented in the appendix section (Parameters of the model are not
necessarily unique: estimability issues). Once estimated on some
data, the β are noted β̂ .

We can phrase questions of interest in terms of the model β
values. Returning to model 9, one question might be if our data
(here the number of days after the deadline) changes with age. In
other words, from model 9: is β4=0? (is the effect of age equals to
zero? Note that the fifth column corresponds to β4). From the same
model we may want to know if the average number of days late dif-
fers between groups: is β1 equal to β2, and β2 equal to β3, or equiva-
lently is β1−β2=0 and β2−β3=0?

When we ask questions such as β4=0?, we know that we do not
in fact have β4 – the ideal parameter – but β̂4 — an estimate of the pa-
rameter. So, our tests take into account that β̂4 will have some error in
its estimate, related to the size of the residuals �̂ and the correlations
between the columns of the design matrix3 X.

More on the interpretation of the β̂ can be found in the appendix
section (Interpretation of the β and reparametrization of the model).

To summarize

• The GLM is…a model. The word model can have several definitions
in different contexts but here this says that we know something
about how our data (days late of article submission) are related to
other data or knowledge (such as the age of a subject, or which
country they come from). The model is the expression of the form
of this belief with mathematical symbols.

• The GLM is “Linear”. This simply refers to the belief (expressed in
the model) that our data formed with addition or subtractions of
weighted known data. In other words, this is a simple multiple re-
gression, in which a series of numbers is approximated by the
weighted sum of other numbers. The data approximated are often
called the dependent variable – and in our case will be article
3 The higher the correlations between the columns of X, the higher is the variance of
the β̂ .
submission times – and the data from which it is approximated
are called the regressors or concomitant variables (or sometimes,
confusingly, the “independent” variables).

• “General”. It is called general because the regressors are not neces-
sarily measured data, but can code for the belonging to a group or to
a condition. The GLM encompasses linear regression and ANOVA.

In the literature, the GLM also generally encompasses multivariate
methods (several measurements y per individual or line of X, there-
fore more than one column in the Y matrix). We chose not to discuss
this aspect here to keep this review simple, but see for instance
Worsley et al. (1997).

A brief and biased history of the development of the GLM in
neuroimaging, and some lessons

The first fMRI papers comparing two experimental conditions
could have phrased their methods in terms of the GLM, but it was
not until 1995 that Friston et al. (1995) proposed the GLM as such
to the functional imaging community.

In the implementations of SPM prior to SPM94, analyses such as
analysis of variance, t-tests and regressions required separate rou-
tines. Once introduced, the GLM allowed SPM to simplify the code
considerably. SPM is written in MATLAB that is a particularly good
match for the GLM as the matrix expressions found in textbooks
could be implemented directly, so that the code almost reproduces
the formulas. The good match between the code and the formulas
made the code easier to understand. This was an important factor
for the rapid dissemination of the ideas.

The design matrix display was introduced in SPM94. At the time,
Keith Worsley reported that he did not see the use of the GLM formu-
lation as a great addition to the field of statistics, but he was enthusi-
astic about the idea of displaying the design matrix. Displaying the
design as a matrix was not and is still not common in statistical pack-
ages, but the information contained in the visual representation
makes it easier to think about possible comparisons that could be per-
formed. Keith thought this was a significant addition to the field of
applied statistics. Fig. 1 shows the historic design matrix of (Friston
et al., 1995).

As fMRI methods developed, it became clear that the temporal
correlation of the signal was an issue: the noise could not be consid-
ered independent between scans, so models assuming independent
errors did not apply. One idea at the time was to apply some temporal
smoothing both to the data Y and to the design matrix X, so that the
noise variance–covariance could be approximated by the effect of
the applied smoothing filter rather than from the data, and the de-
grees of freedom corrected accordingly (or, so it was believed …).
This was not an efficient approach, and clearly the theory of the
GLM was not completely mastered (including by the first author of
this review). This was corrected quickly by Keith Worsley (Worsley
and Friston, 1995), and soon the better solution of whitening the sig-
nal using an auto-regressive model was implemented by several in
the field (Bullmore et al., 1996; Woolrich et al., 2001).

The flexibility of the GLM framework quickly resulted in ingenious
ways to solve a variety of interesting problems. For instance, with the
advent of event related fMRI, we needed flexible models for the he-
modynamic response function (HRF). Up until this point the most
common method of constructing an estimated fMRI time course was
to convolve a time course of delta functions representing the event
onsets with a canonical4 HRF derived from the auditory or visual cor-
tex BOLD observations. SPM96 offered the possibility of adding other
regressors to the event model that could capture variation in the
shape of the response. One popular set of functions was the Taylor-
4 The word canonical here means the standard (most commonly used) model of the
hemodynamic response, based on a combination of gamma functions.



Fig. 1. The design matrix of Friston et al., 1995: This is (probably) the first time the de-
sign was displayed as a design matrix in the neuroimaging literature (in this instance
for PET data). It shows that the first implementation made the design matrix non-
redundant by removing one column of the subject effects and centering these. Testing
for the subject effect could simply be accomplished by a contrast built as the identity
matrix aligned above the columns.
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series expansion of the HRF, adding to the HRF its derivative in time
and the derivative with respect to the parameter controlling for the
width of the HRF (see the next section for some additional examples
of the use of the GLM in fMRI). The unknown lag of the response and
the variation of its shape could therefore be accommodated in a very
simple manner.5 The estimated parameters of basis functions could
be used to estimate the delay of the HRF relative to the canonical re-
sponse (Liao et al., 2002; Henson et al., 2002).

The GLM used to take a significant time to compute on long time
series. In order to do an F-test we need to compare residual variance
between a full and a reduced model. The early versions of SPM imple-
mented the F-test by running the full and reduced model separately.
We soon realized that, in fact, any desired test within the specified
model could be implemented by computation involving only the pa-
rameters estimated from the full model. A decrease in computation
time was one outcome; it was also a more principled way to design
the F-test via contrasts in the space of the model parameters (Poline
et al., 2007).

Roger Woods appears to have been the first in our field to realize
that the variance estimates from models including multiple subjects
that included all the scans from all subjects should not be used to
test for group effects (Woods, 1996; Holmes and Friston, 1998). This
was an issue in PET analyses from the early 1990's, but it became ob-
vious to the neuroimaging community only when the number of
scans per subject started to get close to 1000. In those cases the 32-
bit address space of most CPUs became the limiting factor for ana-
lyses, motivating us to think harder about the right way to do group
analyses. Woods (1996) pointed out the distinction between across
scan and across subject variance to attribute the correct degrees of
freedom for population inference. Again, in retrospect, it is rather
puzzling that we had not interacted with the statistical community
enough to be aware of the issue sooner.

Identification of the several levels of variance led to the develop-
ment of hierarchical models, variance component estimation, and
5 In general this means comparing all the functions with an F-test when comparing
two conditions. Since this leads to an unsigned test and is less easy to manipulate at the
group level, researchers often only consider the parameter weighting the HRF function.
This is suitable only if the other functions have similar weights between the conditions.
If not, a more delayed response may appear weaker, even if its amplitude is actually
higher.
Bayesian techniques. Here the fMRI community started to catch up
with the standards in biostatistics (Friston et al., 2002; Beckmann et
al., 2003; Woolrich et al., 2004). The implementation framework pro-
posed for instance in SPM makes the GLM even more general, by pa-
rameterizing the variance–covariance as a linear combination of
weighted symmetric matrices. These weights are then found using
Restricted Maximum Likelihood in an Expectation Maximization
scheme allowing correct inference on repeated measures designs.
Some packages, such as FSL, implement a mixed effect model that
takes the first level variance into account in the estimation of the
group results. For instance, a subject with a high level of noise
would have less influence on the group result than a subject with
less noise.6 AFNI also implements mixed effect analysis in specific
command line programs such as 3dMEMA.

To conclude this section, we believe we have learnt two main
lessons from this short and biased review of recent history. First, a
few missteps made while developing fMRI analysis techniques
could have been avoided by closer interaction with the statistical
community, and the field could have moved even more quickly.
While the statistics community is unlikely to be impressed by tech-
niques such as the GLM that have been considered standard for
some time, many statisticians are interested in fMRI data for the
challenge they offer and because they create pretty images of the
brain at work. Through this interaction, we may be able to gather
better techniques. The rider is always that, in order to be useful,
the techniques have to be implemented in standard packages that
can work with neuroimaging data, which is not always the case for
the latest methods. Many of the most advanced techniques are still
difficult to use, as the work to make these available to the commu-
nity of researchers in cognitive neuroscience is not well recognized
or evaluated.

Second, it is remarkable to see how the term “GLM” and the over-
all framework has impacted neuroimaging. The vast majority of arti-
cles found with a PubMed search for “General Linear Model” or
“GLM” in the title are either from neuroimaging or are studies of a
gene called GLM. Clearly, neuroimaging has embraced this frame-
work following the Friston et al. (1995) paper, and there is little
chance that the use of the GLM will disappear in the near future.
Other techniques such as classification or machine learning are likely
to get more and more used, but often these will start with some pro-
cessing involving the linear model, or relate the results to those of
the GLM. Inference will probably move to non-parametric statistics
because of the richness of the tests that can be performed and the
more exact estimation of the risk of errors, but the statistics comput-
ed are likely to be based on the GLM, because of its (in general) easy
interpretation and fast computation.

A few examples on the early use of the GLM in fMRI — and
some warnings

We have chosen a few examples on the way that the GLM was
used in the early development of fMRI methodology to illustrate its
versatility. There are many possible illustrations of this, and the fol-
lowing are the ones that first came to mind because of their simplicity
and usefulness.

Modeling low frequency drifts

The first attractive and very practical use of the GLMwasmodeling
of the low frequency noise found in the fMRI signal by the use of co-
sine functions. Engineering schools would traditionally teach their
6 Often the number of scans per subject is high and this makes the intra-subject var-
iance negligible.



7 The experimental paradigm is the set and timing of experimental conditions in this
context.

8 Some cognitive psychologists would object to these experimental conditions, but
the authors believe that with sophisticated statistical techniques and enough data they
should be able to find some differences between the two conditions.

876 J.-B. Poline, M. Brett / NeuroImage 62 (2012) 871–880
students how to implement a digital filter for electrical signals that
are not short time series, but continuous signals sampled by analog-
to-digital chips. These filters were not adapted to the shorter fMRI
time series. In the GLM, low pass filtering simply amounts to includ-
ing the low frequency to be removed in the model. For example, we
can assemble a matrix L composed of column vectors containing co-
sine functions up to a certain frequency. By appending the L matrix
to the design matrix X, we entirely decorrelate the data from these
low frequencies in the fit. The interpretation then becomes very
easy in terms of which frequencies or period of time has been re-
moved. As the fMRI run can be quite long the L matrix could include
many columns, and this produced design matrices with many param-
eters, also taking a lot of the space on the display of the design. An al-
ternative but equivalent method is to pre-multiply both the design X
and the data Y with a matrix K= I−LL− that projects onto the space
orthogonal to L. Then, the structure induced in the noise � has to
be taken into account, as � would then have KKT (which is equal
to K in this instance) as variance–covariance structure.

Including the estimated movement in the model

It has become common practice to include the estimated move-
ment parameters in the design matrix as nuisance regressors. Clearly,
a subject's movements induce considerable changes in signal at the
voxel level, but the idea to include themovement parameter estimates
in the design matrix was not necessarily straightforward as it is not
clear that these changes are linear with the amount of translation in
a particular direction or rotation about a particular axis. In fact, the sig-
nal induced by movement is not linear with the movement parame-
ters. To approximate non-linear behavior, some models also include
the square and sometimes the cube of movement parameters. The pa-
rameters can also be shifted by one scan up and one scan down to
model the effect of lag between the movement and signal. Which set
of regressors is sufficient to removemost of the noise induced by actu-
al movement is a difficult question that has no universal answer.
In part, this is an empirical question that can be addressed with an
F-test, but in general choosing the best set of regressors in a GLM is
not yet a common practice. Another solution often seen in the litera-
ture is to include time courses of regions that are particularly sensitive
to movement as regressors in the model. For example it is common to
include a regressor derived from the time course of signal in the
ventricles.

Finite Impulse Response (FIR) and other basis functions

As we mentioned above, a set of basis functions gives some flexi-
bility to better fit the effect of the Hemodynamic Response Function.
One particularly interesting set of functions is the Finite Impulse Re-
sponse (FIR) basis functions (Dale, 1999; Glover, 1999). This basis
set is used in the GLM to obtain a noisy but simple estimate of the
shape of the hemodynamic response after a given experimental con-
dition. For instance if we want to estimate the HRF over 20 s and we
have a TR of 2 s, the FIR basis set would consist of 10 regressors (per
condition), each regressor consisting of a “1” for the lag at which one
would like to estimate the response and “0” otherwise. Before this so-
lution was devised, selective averaging was used and this led to com-
plications when the conditions overlapped and were not balanced or
entirely randomized across the run. The FIR model gives an elegant
solution to a common problem. However, when the time series are
not very long and the number of conditions is large, this leads to a
large number of parameters to estimate. Also, the experimental con-
ditions can be partly correlated, and in these two situations the esti-
mation can be very noisy. As usual, we do not usually know a priori
the correct period over which we should estimate the HRF. More re-
cent work (also based on linear models) with priors or regularization
schemes provide reasonable solutions to this estimation problem (see
for instance (Ciuciu et al., 2003), amongst several). Correct estimation
of the HRF and ways of incorporating this estimation into the detec-
tion step without increasing the risk of false positives has become
an important sub-field of fMRI. Models with FIR basis functions are
not usually adequate for detection purposes — meaning that the
large number of parameters makes the estimation noisy enough
that it can be difficult to detect significant signal related to particular
event types (conditions).

Psychophysiological interactions: “PPI”

This technique is yet another clever use of the GLM (Friston et al.,
1997). Imagine that your experimental paradigm7 is made up of
blocks of 30 s of condition A: “think”, and 30 s of condition B: “do
not think”.8 Now extract the time series R(t) from your favorite
brain region R, multiply this time series by −1 only during condition
(B), call this PPi(t). What are the regions showing correlation during
A and anti-correlation during B with your favorite region? To get
the answer, include the constructed regressor in X, also include R(t),
and test within each voxel for the β corresponding to PPi(t). This
map should show regions that correlate differently with R during A
compared to B.

GLM for simultaneous EEG and fMRI

As a last quick example, the first analysis of simultaneous EEG and
fMRI used the following strategy. First, the EEG signal was prepro-
cessed to remove the huge artefactual signal induced by the gradients
during Echo Planar Imaging, a step that can use the GLM (Vincent et
al., 2007). Second, the power of the alpha band (8–12 Hz) was calcu-
lated within a short and sliding time window, and this measure was
convolved with the HRF (or with a set of basis functions to model var-
iation of the HRF). This convolved signal was then sampled at each TR
to form a regressor, which was finally included in the model X (see for
instance (Goldman et al., 2000; Laufs et al., 2003), amongst others).
Many epilepsy researchers also investigated how to best estimate
the HRF after inter-ictal spikes, evoked response potentials (ERPs),
or spectral EEG variations, using the GLM or techniques derived
from it.

Take-home message

There are an infinite number of clever ways to use the GLM to an-
swer questions with fMRI data, it would be hard to list them all.

Reflecting on our previous examples, it seems that the GLM has
given us ways to find quick solutions for many common problems
in neuroimaging. To summarize, the GLM is 1) conceptually simple
2) readily available in standard packages 3) an incredibly flexible
tool 4) implements the standard statistical testing framework 5)
does not require heavy computation and can be implemented in
only a few lines of MATLAB or Python code. This combination is so at-
tractive to methodologists and neuroimagers that is almost impossi-
ble to resist.

However, the solution provided can be “too quick”. Generally, a
better method can be designed that may include a more complex
model with regularization terms, and variable or dimension selection
with cross validation. Often the computation of these more complex
solutions is iterative and may involve statistical sampling. These
better-adapted solutions may already exist, but the software pack-
ages to use them are not very easy to install or use. The GLM in its
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simple form has – for better or worse – bright days ahead and for the
foreseeable future.

The GLM relies on assumptions. First the matrix X should contain
the appropriate regressors, whether at the first (across scan) or at
the second (typically, across subject) level. Too few, or too many re-
gressors (or put differently, a design matrix space that is too large
or too narrow) will lead to either loss in sensitivity or in specificity.
Second, the normality assumption should hold. This is difficult to
check at each and every voxel, but see the work of many that have
implemented non parametric tests, robust techniques or outlier de-
tection in neuroimaging ((Holmes et al., 1996), followed by many).
Third, the assumptions on the variance covariance structure of the
noise should hold as well. These assumptions are difficult to check.
Lehmann (2008) summarizes the history of the linear model:

In the 1920's it was developed in a new direction by R.A. Fisher
whose principal applications were in agriculture and biology. Final-
ly, beginning in the 1930's and 40's it became an important tool for
the social sciences. As new areas of applications were added, the as-
sumptions underlying the model tended to become more question-
able, and the resulting statistical techniques more prone to misuse.

Summary measures and visualization tools for the residuals of the
model are therefore crucial, and again, too rarely seen in current
mainstream packages. A good review of the assumptions and pitfalls
of the GLM can be found in (Monti, 2011).

In any case, it seems clear that it will be valuable for researchers
using fMRI to master the Swiss army knife tool of the GLM, and un-
derstand its assumptions and limitations.

Conclusions: Three wishes and one prediction

We propose three wishes and one prediction about the GLM and
the future of neuroimaging.

• Wish No. 1. We wish that assumptions made by the GLM would be
more often checked. This implies that more people would use the
diagnostic tools such as (Zhang et al., 2006), and that there should
be more development of these tools. To be used more often, the di-
agnostic tools should be part of the main analysis packages. We
wish there was more time spent on checking the results and less
on rushing to publish, but we do not expect this to happen any
time soon.

• Wish No. 2. There are still improvements that can be made in the
current implementation of the GLM, at least in the packages we
know well. For instance, in SPM, while the term σ2 is specific to
each voxel to allow for the magnitude of the noise to change, the
AR coefficient and the structure of the covariance are assumed to
be identical across “activated”9 voxels, to speed up computations
and allow the use of random field theory. There is still room for im-
provement in the current packages, but as this work is not necessar-
ily fancy or exciting it is rarely undertaken. Another direction of
improvement is to develop tools to help in choosing the appropriate
model (see (Kherif et al., 2002) for an attempt). The standard ap-
proach is to assume the model X itself is constant across regions
of the brain despite apriori knowledge that this should not in gener-
al be the case.

• Wish No. 3. We wish that models that match the data better than
the GLM would be used more often, and therefore that software
packages proposing those would be more widely used. In particular,
non parametric, robust and Bayesian procedures could be employed
more often. This often involves longer and more complicated
9 The variance structure is estimated across the voxels for which the effects of inter-
est in the model are “significant” at the α level 0.001.
calculations, and the methods are harder to explain to reluctant re-
viewers, who prefer to see methods they understand even when
they may not be right for the data. Better teaching and tighter inter-
actions between research communities are needed.

• Prediction. We predict the GLMwill still be around after the middle-
aged authors of this paper are long gone.

To conclude, the GLM has provided us with an extraordinary range
of solutions to problems in the field and yielded a wealth of results,
and will continue to do so in the future. Let's hope that this venerable
giant will not prevent the development of more complex but better
techniques in fMRI.
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Appendix A

The intra subject example

This a “regression” example. If you measure the signal during an
Echo Planar Imaging sequence, you may want to see how it correlates
with the experimental paradigm presented to the subject during
scanning. Your belief is that in some regions of the brain, the stimula-
tion will induce some neural activity, the neural activity will induce
some hemodynamic response, therefore the data (time series) ac-
quired y(t) is correlated with an ideal – noise free – response x(t).
In other words, y(t) is equal to this perfect response x(t) times a
weighting coefficient β, plus some random noise �(t).

The model is therefore y(t)=β(x)t+�(t), with �(t) following a nor-
mal distribution with zero mean, (if the distribution is not Gaussian we
are in the case of a generalized linear model), and β is the weight on the
ideal response.10 If more than one response x(t) is expected (there are
several conditions in the experimental paradigm), other terms are
added and the model is a multiple linear regression model.

Interpretation of the β and reparametrization of the model

Working directly with the parameter estimates is a powerful frame-
work that allows us direct access to any questions that can be put to the
model. However, interpretation of the β̂ is not always straightforward.
We take the simple example of model (1) to show this.

yi ¼ β0 þ β1xi þ �i ð10Þ

The parameter β0 can be interpreted as the number of late days for
an author of age 0, while the β1 is the number of late days attributable
to each year of someone's age (the slope of the regression). Let us
center the age regressor around zero, i.e. remove the mean age from
each value, with: ~xi ¼ xi−∑i xi=n. Now replace x by ~x in X, then the
parameter β0 will be interpreted as the number of days late the aver-
age author's age, which may be a more useful value. The parameter β1

in this reparametrized model does not change, and is still the number
of days late attributable to each year of someone's age. Removing the
mean of x is “decorrelating”, in other words “orthogonalizing” x with
respect to the first column of ones. Note that with this model param-
etrization ~X ¼ 1 ~x½ �, the estimation of the parameter β1 does not
change, but the estimation of β0 does. The test on β̂1 does not change,
but the test on β̂0 does.
10 It is important to see that here β is an “ideal” parameter. With some specific data,
the estimation of β, denoted β̂ will take some specific value. But if the experiment is re-
peated, the data y will be different, and the estimation of β̂ will differ. On average, we
should have y(t)=x(t)β.



Y: Data The (n, 1) time series, where n is the number of time
points or scans. yi: one of those measures.

λ, Λ: Contrast Vector or matrix of weights (λ or Λ) or of the
parameter estimates used to form the (numerator)
of the statistics (denoted c in some other references)

X: Design matrix or
design model

The (n,p) matrix of regressors.

β: Model parameters The true (unobservable) coefficients such that the
weighted sum of the regressors is the expectation
of our data (if X is correct)

β̂ : Parameter
estimates

The computed estimation of the β using the data Y :
β̂ ¼ XTX

� �−
XTY

C(X): Vector space
spanned by X

Given a model X, the vector space spanned by X are
all vectors v that can be written as v=Xλ

PX: The orthogonal
projector onto X

PX=X(XTX)−XT

RX: Residual forming
matrix

Given a model X, the residual forming matrix
RX= In−XX− transforms the data Y into the residuals
r=RXY, in the space orthogonal to X

σ2V: scan × scan
covariance

This (n,n) matrix describes the (noise) covariance
between scans
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Let us take again the example of model (9) with a constant term,
indicator variables coding for the three groups (US, UK, FR), and the
covariate age xi. Our data are still the time of submission after dead-
line. We have the following design matrix:

y1
y2
y3
y4
y5
y6
y7
y8
y9

2
6666666666664

3
7777777777775
¼

1 1 0 0 x1
1 1 0 0 x2
1 1 0 0 x3
1 0 1 0 x4
1 0 1 0 x5
1 0 1 0 x6
1 0 0 1 x7
1 0 0 1 x8
1 0 0 1 x9

2
6666666666664

3
7777777777775

β0
β1
β2
β3
β4

2
66664

3
77775þ

�1
�2
�3
�4
�5
�6
�7
�8
�9

2
6666666666664

3
7777777777775
: ð11Þ

We first note that in this model the parameters are not uniquely
defined, as the first column is the sum of the second, third and fourth
columns. In that case, the parameters β̂1;2;or 3 are only defined up to an
arbitrary additive constant term. The only interesting questions that
can be put to the model involving the second through the fourth col-
umns will take the form of the difference between parameters β̂1;2;or 3,
eliminating the constant term, for instance: β1−β2=0? The differ-
ence between “US” versus “mean of UK and FR” would be written
as: β1−(β2+β3)/2=0.

If on average the “UK” and “FR” authors are older than the US
authors – their countries are – then we may find our test is not signif-
icant because the difference in the Y between the two groups may
largely be explained by the difference in age of authors from the old
continent compared to the new continent. This is correct, as we
don't want to attribute to the factor “country” those differences that
could in fact be due to “age”.

One could have written model (11) differently to eliminate the re-
dundancy, for instance removing the first column. In that case, we
could test for the first parameter, which would be interpreted as the
days of submission after deadline for an hypothetical “US” author of age
0, but this is hard to interpret and in general youmay bemore interested
in the difference between the group means rather than whether the ab-
solute value of the mean of a particular group is different from zero.

Another solution would be to code for the difference between “US”
versus “UK”, and the difference “UK” versus “FR”.11 Each parameter of
this new version is estimable, and can be interpreted as the difference
of the means of the groups, accounting for age, but the (interesting)
comparison “US” versus (“UK” and “FR”) would be more difficult to
formulate. It is often easier to use a simple parametrization and set
up a valid contrast.

Note that these are only three versions of the same model: a re-
parametrization that makes it more or less easy to interpret the pa-
rameters, and test for some effect. However, the three models are
the same: the fitted data, the estimated error and the information
that can be extracted from the models are identical in the three cases.

See Poldrack et al. (2011) for a similar example with more de-
tailed12 explanations and using a model that includes interaction
terms (we highly recommend this reference).

To conclude this section, while simple, the different possible pa-
rametrization of the model and the corresponding contrasts and
tests that can be put to the model can be a little tricky to interpret.
The most crucial aspect to remember is that whenever an effect is
tested, all other effects present in the model are removed from the
data, whether these are confound variables or other effects that may
be of interest, such that the tested effects are “decorrelated” from any
other modeled effect. Again, this can be thought as testing the full
model against a reduced model that contains all non-tested
11 This is the parametrization that R would use.
12 And possibly clearer.
effects. For a deeper understanding of this, appendix sections
(Subspaces, Orthogonal projection, Parameters of the model are not
necessarily unique: estimability issues, Testing effects with the model
parameters is equivalent to testing a reduced model, and What is the
reduced model associated with a specific contrast?) should help.

Notation
GLM, a quick summary

The GLM can be written in matrix form with:

Y ¼ Xβ þ �;with � eN 0;σ2I
� �

The best linear unbiased estimate of E(Y) is the ordinary least
square solution:

Ŷ ¼ Xβ̂ ¼ X XTX
� �−

XTY ¼ PXY ;with PX ¼ X XTX
� �−

XT

we have : β̂ ¼ XTX
� �−

XTY
ð12Þ

The residual noise is estimated with:

e ¼ Y−Ŷ ¼ Y−PXY ¼ RXY ;with RX ¼ I−PX

If the error is not independent or identically distributed, but fol-
lows � eN 0;σ2V

� �
, the best solution is to “whiten” the data by pre-

multiplying Y and X by K chosen such that KVKT= I, and the model is:

KY ¼ KXβ þ K�;with K� eN 0;σ2I
� �

; since VarðK�Þ ¼ σ2KVKT ¼ σ2I

This model is then solved as above, leading to the estimate:

Ŷ ¼ Xβ̂ ¼ X XTV−1X
� �−

XTV−1Y ð13Þ

Subspaces

Let us consider a set of p vectors xi of dimension (n,1) (with pbn),
such as regressors in an fMRI analysis. The space spanned by this set
of vectors is formed of all possible vectors (say u) that can be expressed
as a linear combination of the xi: u=α1x1+α2x2+…αpxp, or
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equivalently, there is a (p,1) vector α such that u=Xα. If thematrix X is
formed with the xi: X=[x1 x2…xp], we note this space as C Xð Þ.

All vectors v such that the correlation of vwith any of the xi is zero,
are said to belong to the space orthogonal of X, denoted by: v∈CðXÞ⊥

Not all the xi may be necessary to form C Xð Þ. The minimal number
needed is called the rank of the matrix X. If only a subset of the xi are
selected, say that they form the smaller matrix X0, the space spanned
by X0, C X0ð Þ is called a subspace of X. A contrast defines two comple-
mentary subspaces of the design matrix X: one that is tested and one
corresponding to the reduced model.

Orthogonal projection

The orthogonal projection of a vector x onto the space of a matrix
A, is a vector xp, such that 1) xp is formed with a linear combination of
the columns of A, and 2) xp is as close as possible to x, in the sense that
the sum of squares of x−xp is minimal. The projector onto A, denoted
PA, is the matrix such that xp=PA x. PA is unique and can be computed
with PA=AA−, with A− denoting the Moore–Penrose pseudo in-
verse13 of A. For instance, in the Parameters of the model are not
necessarily unique: estimability issues section of the appendix, the
fitted data Ŷ can be computed with:

Ŷ ¼ PXY ¼ XX−Y ¼ X XTX
� �−

XTY ¼ Xβ̂ ð14Þ

Most of the operations needed when working with linear models
only involve computations in the parameter space, as shown in
Eq. (20). For a further gain, if the design is degenerate, one can
work in an orthonormal basis of the space of X. This is how the SPM
code is implemented.

Parameters of the model are not necessarily unique: estimability issues

If the design matrix X has some redundancy in one or several of its
columns can be formed from a linear combination of the other col-
umns. Two models X1 and X2 are equivalent (and in some sense, are
equal) if any column of X1 can be formed with a combination of col-
umns of X2. In other words, their vector space – the set of linear com-
binations of their columns – are equal. We denote the space of X with
C Xð Þ.

If X has some redundancy, the minimal set with which the col-
umns of X can be formed has fewer vectors (columns) than the num-
ber of columns in X, and the parameters β that can be constructed by
combinations of others are not uniquely defined. Why is this impor-
tant? This points to the fundamental aspect of the GLM: the parame-
ters are not necessarily the most important aspect of the model, it is
the set of vectors that can be formed with the columns of X. What
model (4) in fact means is that the expectation of Y is Xβ, therefore
a linear combination of the columns of X: E(Y)=Xβ. So if we want
to estimate E(Y) from the Y in the least squares sense, we will need
to look for the orthogonal projection of Y onto X (see Orthogonal
projection section of the appendix for the definition of projectors).
If X has some redundancy, the betas are computed (for instance)

using the Moore–Penrose pseudo inverse (β̂ ¼ XTX
� �−

XTY).

Estimability. The only interesting information we can get from the
model is from the rows of E(Y), or from a linear combination of those.
The form of an estimable function is therefore hTE(Y), or hTXβ. In
practice, the vector h is rarely seen, but it can be seen from this that
a contrast of the parameters of the model will have the form
λ=hTX, and therefore is a linear combination of the rows of X. For in-
stance, the SPM package allows you to test linear combinations of the
13 Any generalized inverse could be used.
β, but would only accept those that are estimable (linear combina-
tions of the rows of X).

Testing effects with the model parameters is equivalent to testing a
reduced model

Testing whether there is an effect of some factor or of some covar-
iate in the model is specified by setting a linear combination of the β
to zero, or testing whether it is positive/negative. The null hypothesis
is therefore that, for instance, λTβ ¼ 0, or λTβ > 0. In the “formula”
framework, it may be difficult to ask questions about the difference
between the individual levels (for instance if a factor has three levels,
what is the difference between level 1 and level 3?).14

To reject (or accept) the null hypotheses stated below in the case
where λ involves only one linear combination, the standard t or F sta-
tistic can be formed:

tdf ¼ λT β̂=SD λT β̂
� �

ð15Þ

where SD λT β̂
� �

denotes the standard deviation of λT β̂ and is

computed from the variance

var λT β̂
h i

¼ σ2λT XTX
� �−

λ ð16Þ

For independent Gaussian errors tdf follows a Student distribution
with degrees of freedom given by df= tr[RX]=n−p with n the num-
ber of rows in X and p the number of independent regressors in X.15

At the voxel level, the value tdf is tested against the likelihood of
this value under the null hypothesis.

If a number of columns in X have to be tested conjointly, as in the
ANOVA example, the F statistics can be formed by testing the sum of
squares of the residuals under the reduced model (the model without
the regressors corresponding to the effects being tested) compared to
the sum of squares of the residuals under the full model.

Fν1 ;ν2
¼

YT I−PX0

� �
Y−YT I−PXð ÞY

� �
=ν1

YT I−PXð ÞY=ν2
ð17Þ

¼ SSR X0ð Þ−SSR Xð Þð Þ=ν1

SSR Xð Þ=ν2
ð18Þ

with SSR(X), SSR(X0), the sum of square for error of model X, X0, re-
spectively.

ν1 ¼ tr PX−PX0

� �
¼ tr R0−RXð Þ

ν2 ¼ tr I−PXð Þ ¼ tr RXð Þ
ð19Þ

While very useful for the understanding of an F test as the differ-
ence of sum of squares (this is probably how most fMRI packages
implemented the F test), there are two serious limitations with this
formulation. First, it requires that we compute and fit two linear
models. When dealing with thousands of voxels, and sometimes
long time series (and multiple runs), the computational cost was
very high, and clearly limited the number of interesting comparisons
that cognitive neuroscientists would happily do. The other limiting
aspect is that if we want to test several linear combinations of the β,
such as for instance if β1=β2, and β2=β3, these may not necessarily
14 Those questions should usually come after it has been seen that the factor has an
effect.
15 When the variance covariance V cannot be inverted easily but an estimation is
known, the degrees of freedom are approximated (Worsley and Friston, 1995).
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be columns of X directly. The next section explains how to go from a
contrast of interest to testing the associated reduced model.

What is the reduced model associated with a specific contrast?

We assume from now on that the contrast of parameters we
would like to test may concern multiple constraints on the β, and
will denote those constraints by ΛTβ=0.

As seen above, setting ΛTβ=0 is also setting HTXβ=0 for some
matrix H (the number of columns in H is the number of columns in
Λ). If we have a (legitimate) contrast of the parameters, what does
H look like? How does this relate to a reduced model? Why is all
this relevant for fMRI? It is interesting to understand what H is.
While Λ puts some constraints on the parameters of the model, H is
the equivalent constraint on the space of X (Christensen, 2002). The
reduced model that is to be tested is Y=Xβ+� and HTXβ=0, or,
equivalently, that E(Y)∈C(X) and E(Y)∈C(H)⊥ where C(H)⊥ is the
space orthogonal to H (16). The reduced model should therefore be
a matrix X0 such that X0∈C(X) and X0∈C(H)⊥.

By choosing H=XT−Λ, we impose the constraint on X that corre-
sponds to ΛTβ=0. Since HTE(Y)=HTXβ=ΛTX−Xβ=ΛTβ=0, we
have E(Y)∈C(H)⊥ with this particular choice of H. Also, H∈C(X), so
H is a matrix that imposes a constraint on X within the space of X,
and is the part of X that is being tested. The part of X that is not
being tested, the reduced model, can be found easily by projecting
the orthogonal space of H onto X, so we have X0=PXRH=PX(I−
PH)=PX−PH. Testing for ΛTβ=0 is equivalent to testing for the re-
duced model Y=X0γ+ε with X0 as defined above. Having defined
X0 as above, we have PX=PX0

+PH.
Now, the numerator of the F test 20 can be rewritten in a much

simpler way, as a function of Λ only:

YT PHð ÞY ¼ YTX XTX
� �−

XTH HTH
� �−

HTX XTX
� �−

XTY=r Λð Þ ð20Þ

¼ β̂TΛ ΛT XTX
� �−

Λ
� �−

ΛT β̂=r Λð Þ ð21Þ

Where r(Λ) is the rank of Λ, and the F test can be rewritten as:

Fν1 ;ν2
¼

β̂TΛ ΛT XTX
� �−

Λ
� �−

ΛT β̂=ν1

MSE
ð22Þ

where the MSE is the mean square error SSR(X)/ν2.
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